School of Materials Science and Engineering, Xi'an Jiaotong University
28 West Xianning Road, Xi'an, Shaanxi, 710049, P. R. China
Email:dg_xie@xjtu.edu.cn

Employment

Apr. 2016- Now
Assistant Professor (Faculty Member) in School of Material Science and Engineering
Xi’an Jiaotong UniversityXi’an, Shanxi 710049, China
 
Education: 
Sep. 2010- Mar. 2016 
Ph.D. Major: Material Science
Xi’an Jiaotong UniversityXi’an, Shaanxi 710049, China
 
Aug. 2011-Aug. 2012:
Visiting student at Departments of Material Science and Engineering and Department of Nuclear Science and Engineering.
Massachusetts Institute of TechnologyCambridge, MA, USA 02139.
 
Sep. 2006-Jul. 2010:
Bachelor of Science. Major: Materials Science & Engineering
Xi’an Jiaotong UniversityXi’an, Shaanxi 710049, China
 
Awards and Honors:
[1]  Certificate of short course, ‘Transmission electron microscopy of materials’, Microscopy & Microanalysis 2012 meeting, Phoenix, AZ. (Jul 2012)
[2]  Rated as ‘excellent’ in leading a project named “Fabrication of low-adhesion, high-speed biomimic water strider based on superhydrophobic materials” (2009-2010), National Innovation Experiment Program for University Students, Project leader.
[3]  The National Scholarship (3/120), 2007-2008
 
Research interests:
In situ TEM techniques to study the microstructural evolution in the following areas:
1. Micro- and nano-scale damage mechanism in gaseous environment, especially in hydrogen.
2. Electromigration of metallic interconnects.
3. Battery electrochemistry.
4. Superhydrophobicity
 
Publications
Journal papers:
[1]  Li M, Xie D-G, Ma E, Li J, Zhang X-X, Shan Z-W. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures. Nature Communications 2017, 8: 14564.
[2]  Xie D, Li S, Li M, Wang Z, Gumbsch P, Sun J, et al. Hydrogenated vacancies lock dislocations in aluminium. Nature Communications 2016, 7: 13341.
[3]  Zhang LQ*, Wang YC*, Xie DG*, et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode[J]. RSC Advances, 2016, 6 (14): 11441-11445.
[4]  Zhang L, Tang Y, Wang Y, Duan Y, Xie D, Wu C, et al. In Situ TEM Observing Structural Transitions of MoS2 upon Sodium Insertion and Extraction. RSC Advances 2016, 6(98): 96035-96038.
[5]  Yang L, Dai T, Wang Y, Xie D, Narayan RL, Li J, et al. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties. Nano Energy 2016. 2016, 30: 885-891.
[6]  Xie D, Wang Z, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials, 2015, 14 (9): 899-903.
[7]  Wang Y, Xie D, Ning X, et al. Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam[J]. Applied Physics Letters, 2015, 106 (8): 081905.
[8]  Xie D, Li W. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys[J]. Applied Surface Science, 2011, 258 (3): 1004-1007.
[9]  Zhang D, Chen F, Fang G, Yang Q, Xie D, et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Microengineering, 2010, 20 (7): 075029.
 
Patents:
[1]  Qiao G.; Fang G.; Xie D.; Chen L. "A method for constructing virtual passage controlling liquid droplet motion.” (2009),Patent Number: 200910023459
[2]  Shan Z.; Chen L.; Li, M.; Xie D.; Liu B.; Zhang P.; Wan J. “ An efficient method and automatic instrument to fabricate tungsten tips.” (2012), Invention Patent, Patent Number: CN 201210044381
[3]  Shan Z.; Li M.; Xie D. “A quantitative nanoheater for electron microscopy.” (2014), Invention Patent, Patent Number: 201410542592.2
[4]  Shan Z.; Li M.; Xie D. “A quantitative heating device for in situ electron microscopy.” (2014), Invention Patent, Patent Number: 201510437346.2
[5]  Shan Z.; Li M.; Xie D. “A quantitative thermomechanical tensile device for in situ electron microscopy.” (2015), Invention Patent, Patent Number: 201510710901.4
 
Meeting talks:
[1]  Xie D.-G., et al. “Hydrogen Effects on Dislocation Motion Revisited by Quantitative Mechanical Tests Inside TEM”, Moran, WY, USA, Sep. 11-14, 2016 (Oral)
[2]  Xie D.-G., “In situ TEM Investigation of Blister Formation on Aluminum Surface in Hydrogen Environment”, 2016 International Workshop on Materials Behavior at the Micro- and Nano-Scale, Xi’an China, Jun. 1-3, 2016 (Oral)
[3]  Xie D.-G.; Li S.-Z.; Wang Z.-J.; Gumbsch P.; Li J.; Shan S.-W., “In Situ TEM Investigation of the Effects of Hydrogen on the Behavior of Dislocation and Cracking in Aluminum”, 2015 TMS Annual Meeting & Exhibition, Orlando, FL, USA, Mar. 15-19, 2015 (Oral)
[4]  Xie D.-G.; Li M.; Wang Z.-J.; Shan Z.-W., “Hydrogen embrittlement in aluminum investigated by in situ bending in environmental TEM”, 2015 International Workshop on Materials Behavior at the Micro- and Nano-Scale, Xi’an China, Jun. 1-3, 2015 (Oral)
[5]  Xie D.-G.; Wang Z.-J.; Sun J.; Ma E.; Li J. & Shan Z.-W. “In situ TEM Investigation of Blister Formation on Aluminum Surface in Hydrogen Environment”, 2015 MRS Fall meeting, Boston, MA, USA, Nov 29 – Dec 4, 2015 (Oral)