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Synchrotron X-ray Laue microdiffraction is used to investigate the micro-

structure of deformed quartz, which has trigonal symmetry. The unambiguous

indexing of a Laue diffraction pattern can only be achieved by taking the

intensities of the diffraction peaks into account. The intensities are compared

with theoretical structure factors after correction for the incident X-ray beam

flux, X-ray beam polarization, air absorption, detector response and Lorentz

factor. This allows mapping of not only the grain orientation but also the stress

tensor. The method is applicable for correct orientation determination of all

crystals with trigonal symmetry and is indispensable for structure refinements of

such materials from Laue diffraction data.

1. Introduction
By using a submicrometre/micrometre-sized high-brilliance

polychromatic X-ray beam at synchrotron facilities, with the

help of focusing optics such as Kirkpatrick–Baez mirrors

(Kirkpatrick & Baez, 1948), it has become possible to measure

grain orientations and local lattice strain with high precision

(Tamura et al., 2003). With this polychromatic X-ray micro-

diffraction (mXRD) technique, data are rapidly recorded as a

raster scan array of Laue diffraction patterns (LPs) on

surfaces, using a large two-dimensional area detector. Data are

analyzed to obtain macroscopic orientation and strain maps of

the sample, with spatial resolution only limited by the size of

the focused X-ray beam and scanning step size. This tool can

be applied not only to simple metals (Valek et al., 2002;

Spolenak et al., 2003; Budiman et al., 2006; Chen et al., 2010)

but also to complicated geological crystal structures such as

calcite and plagioclase (Chen et al., 2011a; Wenk, Chen &

Smith, 2011). The penetration power of hard X-rays into the

samples opens up the application of three-dimensional scan-

ning methods (Larson et al., 2002) to map the orientation

distribution in three dimensions, a capability unique to mXRD.

However, the indexing of LPs of primitive trigonal lattices

using the conventional LP indexing algorithms has been

problematic. A primitive trigonal lattice is metrically identical

to a primitive hexagonal unit cell with the same c/a value and

same orientation. Corresponding positions of Laue reflections

are thus indistinguishable, but there are differences in

diffraction intensities. Such intensity differences in Laue

diffraction patterns were first used by Schubnikow & Zinser-

ling (1932, Fig. 19) to identify Dauphiné twins in quartz that

are related by a 180� rotation around the c axis. Unlike

twinning laws in many other materials, the diffraction pattern

does not change in terms of reflection positions and reflection

wavelengths but only changes in reflection intensities.

Conventional LP indexing software identifies crystal orienta-

tion by fitting only diffraction peak positions but ignoring

peak intensities (Jacobson, 1986; Chung & Ice, 1999; Tamura et

al., 2003). It is therefore not possible to unambiguously index

an LP of primitive trigonal crystals. Instead, resulting orien-

tation matrices contain a 60� (or 180�) orientation ambiguity

around the c axis. In previous mXRD Laue studies of quartz,

the trigonal mineral was treated as hexagonal (Kunz, Chen et

al., 2009; Chen et al., 2011b). It is worth noting that this

problem does not exist for trigonal Bravais lattices with a

rhombohedral centering symmetry such as calcite, because of

the special extinction rules imposed by this specific Bravais

symmetry.

Recent developments in the Laue diffraction data analysis

method allow diffraction peak intensities to be taken into

account (Dejoie et al., 2011). In this report we demonstrate the

application of this method to the unambiguous indexing of

LPs from primitive trigonal crystals. In order to allow for the

automatic treatment of thousands of LPs as typically obtained

during a mXRD scan, the algorithm is implemented in a
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computer program to realize maps of the two-dimensional

microstructure (orientation, strain, stress etc.) distribution in a

sample. To illustrate our new method, we mapped the orien-

tation and the residual stress in a deformed quartz grain from

a moderately deformed granite using Laue mXRD.

The structure of �-quartz has trigonal symmetry (space

group P3121/P3221), but is described in a primitive hexagonal-

symmetry unit cell (a = b = 4.921, c = 5.4163 Å; � = � = 90, � =

120�; e.g. Glinnemann et al., 1992).

2. Materials and experimental details

The sample is a moderately deformed granite from the Santa

Rosa mylonite zone in southern California (PC 89). A quartz

crystal with undulatory extinction was previously analyzed

with the Laue method for residual strain (Kunz, Chen et al.,

2009). Here we use the same sample to determine the unam-

biguous orientation of trigonal quartz. An uncovered thin

section of the sample PC 89 was prepared in a standard way:

first glued on a glass slide with epoxy, then cut and ground

down to approximately 30 mm thickness, and subsequently

polished with SiC and Al2O3. A quartz grain surrounded by

biotite, muscovite and plagioclase was selected in this study.

Optical microscopy revealed undulatory extinction, indicating

some degree of elastic and plastic deformation. In addition, a

30 mm thin section of a synthetic quartz single crystal was

analyzed to test the reliability of the method.

The mXRD experiment was conducted on Beamline 12.3.2

at the Advanced Light Source of the Lawrence Berkeley

National Laboratory. A polychromatic (5 < E < 24 keV) X-ray

beam (white beam) was focused with a set of Kirkpatrick–

Baez mirrors to a 1 � 1 mm spot (Kunz, Tamura et al., 2009).

The sample, mounted on a high-precision stage, was placed at

45� relative to the incident X-ray beam at its focal point with

the help of a Keyence laser triangulation setup. The sample

was scanned through the X-ray beam at the focus spot. At

each step a Laue diffraction pattern was collected in reflection

geometry, using a two-dimensional DECTRIS Pilatus 1M

X-ray detector mounted at 90� with respect to the incident

beam. As a result of the diffraction geometry in reflection,

mainly high-order reflections are measured. The distance from

the sample to the center of the detector was about 140 mm.

The diffraction geometry, including the exact sample-to-

detector distance, the center channel of the detector and the

tilt of the detector relative to the sample surface, was cali-

brated with a strain-free Si single crystal mounted on the thin

section next to the scanned area. More details of the experi-

mental setup are described by Kunz, Chen et al. (2009). For the

undeformed single crystal, a single LP was collected. On the

deformed PC 89 quartz grain, a 150� 92 mm area was scanned

with 1 mm step size, resulting in 13 800 individual LPs. Typical

LPs from the quartz standard and the deformed quartz are

shown in Figs. 1(a) and 1(b), respectively. It should be noted

that Fig. 1(b) shows one of the patterns that contains fairly

sharp reflections, although they are much broader than those

in Fig. 1(a).

3. Methods and analysis

All Laue patterns from the mXRD experiment were auto-

matically indexed using the software package XMAS (Tamura

et al., 2003); the indexing was based on peak positions and thus

did not resolve the trigonality of quartz. The diffraction peaks

were detected according to a user-defined threshold of the

peak-to-background ratio. The peak position and width of

each individual diffraction peak were determined by fitting
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Figure 1
Laue diffraction images taken on (a) single-crystal quartz and (b) quartz from a deformed granite (PC 89) with selected Miller indices marked, as
indexed by XMAS. The inset shows a zoom on the 42 20 reflection.



peak intensity (I) as a function of position on the Pilatus

camera (x and y pixels) using a two-dimensional Lorentzian

function (Noyan & Cohen, 1987, p. 168, equation 6.6). The raw

integrated peak intensity was also recorded. Grain orientation

was first indexed by fitting the positions of the Laue diffraction

peaks based on the lattice parameters of unstrained quartz

(Glinnemann et al., 1992). We retained an LP only if more than

30 reflections were successfully fitted by XMAS. The Miller

indices for the hexagonal lattice of some of the indexed

reflections are displayed in the two patterns in Fig. 1.

The output results of each diffraction pattern containing

peak position, integrated peak intensity, Miller indices and the

wavelength of the diffracted X-ray beam were then processed

in the following way. First, the number of harmonic reflections,

i.e. the reflections from parallel sets of lattice planes (nh nk

nl), where n is an integer, was determined using the method

introduced by Dejoie et al. (2011). Only the reflections without

harmonic overlap between 5 and 24 keV were considered. The

structure factor, F1, of each selected reflection was calculated

on the basis of the crystal structure (Glinnemann et al., 1992),

using the Miller indices given by XMAS. The square of the

modulus of the structure factor |F1|2 has to be corrected for

polarization of the incident X-ray beam, the absorption of the

diffracted beam by air, the incident X-ray beam flux as a

function of wavelength, the detector response and the Lorentz

factor (Dejoie et al., 2011, equations 1–10). This is necessary

because, in Laue diffraction, diffraction from a lattice plane

varies with orientation, wavelength and diffraction angle. The

incident flux function was obtained by a ‘reverse method’ with

Laue diffraction patterns taken on a thin sectioned calcite

single crystal with the Pilatus camera (Dejoie et al., 2011).

Since the orientation indexing given by XMAS has a 60�

(180�) ambiguity, i.e. the peak indexed as hkil could actually

be hkil, the structure factors for both options were calculated

and corrected. The new values were denoted as jF1j
2
corr and

jF2j
2
corr, respectively. The integrated intensity of each peak in a

diffraction pattern should be linearly proportional to jFj2corr if

the indexing is correct. Therefore, the intensity of each

selected reflection was plotted against the calculated jF1j
2
corr

and jF2j
2
corr separately, and both I–jF1j

2
corr and I–jF2j

2
corr were

fitted with a linear function I ¼ kijFij
2
corr (i = 1, 2). The slope

was calculated by

ki ¼
P

I
�P
jFij

2
corr; ð1Þ

where
P

I is the summation of the integrated intensity andP
jFij

2
corr is the summation of the square of the modulus of the

structure factor of all the selected Laue reflections in a

pattern. The quality of fitting was characterized by the

deviation factor R, which was defined by

R ¼
P
jI � kijFij

2
corrj

�P
I: ð2Þ

A smaller value of the deviation factor R indicates a better

linear relation of the integrated intensity and the square of the

modulus of the structure factor, indicating the correct choice

of orientation.

4. Results and discussion

4.1. Orientation determination

In the case of the thin sectioned strain-free synthetic quartz

single crystal shown in Fig. 1(a), 134 reflections were indexed

by XMAS; 101 of them were without harmonics within the

energy range of the incident beam, and thus 101 points are

plotted in Fig. 2 for the two trigonal orientation variants. The

intensity I was rather poorly fitted to jF1j
2
corr (R = 0.96), as

shown in Fig. 2(a), but shows a high degree of linear propor-

tionality to jF2j
2
corr (R = 0.15, Fig. 2b), which indicates that the

indexing given by XMAS (F1) was wrong [e.g. in Fig. 1(a), 2022

was indexed as 0222]. A more detailed comparison of the

corrected structure factor of some randomly selected peaks

under the two different trigonal indexings is listed in Table 1,

and it shows clearly that the corrected structure factor values

change dramatically if the second indexing is used.

The need to correct structure factors is highlighted in

Fig. 2(e), which is a plot of the intensity of the reflections for

the diffraction pattern of Fig. 1(a) versus the square of the

modulus of the corresponding structure factor before and

after correction. It shows that the raw intensities are not

proportional to the square of the modulus of the structure

factors without correction, jFj2uncorr (black squares), and the

deviation factor R is calculated to be 0.73, rather than a lower

deviation factor R of 0.15 for the structure factors after

correction, jFj2corr (shaded circles).

In order to investigate how the correct solution depends on

the number of indexed peaks, various combinations were

explored. When 77 peaks are indexed, 58 of them with no

harmonics, the R factors are 0.94 and 0.15 when fitting I to

jF1j
2
corr and jF2j

2
corr, respectively; thus the results are essentially

the same. The results remain the same when the number of

indexed peaks is further reduced to about 30. This is, in our

experience, the minimum number of peaks for a successful

indexing even on a diffraction pattern with streaks. Therefore,

from empirical evidence, it is concluded that as long as an LP

is reasonably indexed using XMAS, the number of peaks is not

a critical factor to determine the correct crystal orientation. Of

course, a sufficient number of ‘trigonal’ reflections need to be

included; ‘hexagonal’ reflections such as 1010 or 0110 are

insensitive for the trigonal orientation determination (see e.g.

Fig. 1a).
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Table 1
Comparison of the corrected structure factors of selected peaks under
different indexing.

jF1j
2
corr, jF2j

2
corr and the integrated intensities have arbitrary units. The first

indexing given by XMAS was not correct.

Integrated intensity
Miller index
given by XMAS jF1j

2
corr

Alternative
Miller index jF2j

2
corr

84124 4154 152.1 4154 9.1
19437 5146 133.8 5146 1.8
20971 5161 156.6 5161 1.9
57666 3255 299.7 3255 10.6

3009 4156 133.7 4156 1.2
840586 4152 48.3 4152 117.0
653670 3145 40.9 3145 82.6



Similar to the case of the strain-free quartz single crystal,

Figs. 2(c) and 2(d) display the I–jFij
2
corr plots for the diffraction

pattern of Fig. 1(b), taken on a quartz crystal in the deformed

rock sample. For 51 reflections with no harmonics out of 68

indexed peaks output from XMAS, it is found that jF2j
2
corr (R =

0.09) fits significantly better than jF1j
2
corr (R = 0.90), again

suggesting that the quartz crystal has an orientation 60�

rotated relative to the one given by XMAS. It is noted that the

integration box size for the peak fit was chosen to be 17 � 17

pixels wide when the diffraction patterns were indexed using

XMAS. By checking all the diffraction patterns and the results

from XMAS in this way, the correct orientation is obtained for

each position, allowing the generation of a macroscopic

orientation map. It turns out that the original orientation
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Figure 2
(a), (c) The intensity fitting of the diffraction patterns shown in Figs. 1(a) and 1(b), respectively, using the orientation given by XMAS. (b), (d) The
intensity fitting of the same diffraction patterns but setting the crystal orientation 60� rotated along the c axis with respect to the results given by XMAS.
(e) The intensity fitting of the LP shown in Fig. 1(a). Circles and black squares represent the structure factors with and without corrections, respectively
[compare with (b)].

results chosen by XMAS for this scan have an equal chance of

being right or wrong.

As demonstrated in Fig. 1(b), the diffraction peaks on this

sample are smeared because of the plastic deformation

induced by the accumulation of dislocations and subgrain

boundaries (Cahn, 1949; Nye, 1953). It is thus a matter of

concern how much the peak integration box size influences the

determination of the integrated intensity and how much it will

influence the crystal orientation indexing. If the integration

box size is set to 25� 25 pixels, which is the maximum that still

allows the LPs to be indexed efficiently by XMAS on a

personal computer within reasonable time, more than 90% of

the recorded LP results remain unchanged, compared with the

case of using a 17 � 17 pixel wide peak integration box size.

The pixel deviation is set to be not greater than 0.08 when



analyzing the LPs automatically with both integrated box

sizes. In the other 10% of cases, not enough reflections could

be indexed, because the box size was too large. The average R

factor of the correctly indexed patterns taken on the deformed

quartz sample is 0.22 (7) for a box size of 17 � 17 pixels and

0.24 (7) for a box size of 25 � 25 pixels. The R factor of the

incorrectly indexed patterns was roughly 0.9 in both cases,

which is much larger than the values of the correctly indexed

patterns, and there is no ambiguity in identifying the correct

orientation. Thus, the orientation determinations are not

affected appreciably by the box size.

4.2. Dauphiné twinning and lattice strain mapping of
deformed quartz

The distribution of crystal orientation is mapped and

displayed by showing the Euler orientation angles in the

Bunge (1969) setting, ’1, � and ’2 in Figs. 3(a)–3(c), respec-

tively, based on the LP indexing by setting the box size to 17�

17 pixels and filtering out all the patterns in which fewer than

20 reflections can be found with no harmonic overlap. The

gray color in these figures represents the failure of orientation

indexing, either because the LPs failed to be indexed by

XMAS because they may represent different phases or

because too few reflections were available for linear fitting. It

can be seen that many patterns near the bottom-right corner

are not indexed, mainly because the crystal in this region is

highly deformed, so the diffraction peaks are low in intensity.

From the definition of the Bunge–Euler angles, we know that

’1 and � define the orientation of the c axis of the crystal

lattice, while ’2 represents the orientation of the trigonal +a

axis (rotation around the c axis). The distributions of ’1 and �
seem continuous in Figs. 3(a) and 3(b). This demonstrates that

the orientation distribution of the c axis of the quartz crystal is
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Figure 3
The distribution of the Euler angles (a) ’1, (b) � and (c) ’2 in the Bunge setting. (d) A histogram showing the distribution of the ’2 angle, demonstrating
the existence of two discrete orientations separated by a 60� rotation around the c axis. (e), ( f ) The intragrain orientations for the parent and twin
domains.



quite homogeneous in the scanned region, except for a small

separate grain [circled in Fig. 3(a)] that exists at the top-right

corner, indicated by the red color in Fig. 3(a).

The orientation distribution map of ’2 in Fig. 3(c) shows

that the grain with a single c-axis orientation (Figs. 3a and 3b)

is divided into two domains with different a-axis orientations.

One domain is indicated in yellow, while the other domain is

displayed in blue. The ’2 difference between the domains is

60�, identifying it as a Dauphiné twin. This was further

quantified in a histogram displaying the distribution of ’2

(Fig. 3d). The 90–105� region, which composes about 74% of

the total indexed scanning steps, corresponds to the matrix

grain, while the 30–45� range indicates the twin domain, which

covers approximately 26% of the indexed area. The circled

small grain, which makes up only 0.4% of the whole scanned

region, can also be found in the range of 60–65� in the histo-

gram. More detailed intragrain orientations for both the

parent and the twin domains are shown in Figs. 3(e) and 3( f).

In theory, if an LP were taken on a Dauphiné twin

boundary, the method introduced here would not work

because the Laue reflections from the twin and host domains

would superimpose. However, it is noticed that a pair of split

peaks are observed in many of the diffraction patterns taken

close to the twin boundaries as a result of the relative rota-

tional distortion of the two domains after twinning. In these

cases a sufficiently small box size needs to be selected for

accurate integrated intensity measurement and thus unam-

biguous indexing of both sets of diffractions peaks. The

method is not limited to a unique orientation on the diffrac-

tion pattern, but can also be applied when several grains/

domains are present.

In principle, once a Laue diffraction pattern has been

correctly indexed, a second-rank deviatoric strain tensor can

be obtained by measuring the deviation between the experi-

mental diffraction peak position and the theoretically calcu-

lated results based on the unstrained lattice parameters

(Pavese, 2005; Tamura et al., 2009), and then a second-rank

stress tensor can be derived by applying Hooke’s law,

�i ¼ Cij"j, as long as the fourth-rank stiffness tensor Cij is

available. While the strain tensor measurement in sample

coordinates is not affected by the 60� ambiguity of orientation

determination, the stress tensor can only be computed from

the strain tensor if the quartz crystal orientation is determined

correctly. This is because the stiffness constants of trigonal

quartz show a very strong anisotropy (Ogi et al., 2006). The

stiffness tensor is illustrated in Fig. 4(a), where the stiffness

constant Cij ellipsoid is plotted relative to crystal coordinates

in a spherical projection. The maxima and minima of the

stiffness constants are roughly perpendicular to negative

{0111} and positive {1011} unit rhombohedra, respectively. It is
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Figure 4
(a) Stereographic projection of the stiffness of quartz. The stiffest and softest directions are roughly parallel to the {0111} and {1011} plane normals,
respectively. (b)–(d) The macroscopic stress distribution in the scanned area �xx, �yy, �zz along the x, y and z directions of the sample coordinates,
respectively. Yellow–red colors indicate tensile stress and blue colors compressive stress.



worthwhile to note that the strain measured from the Laue

diffraction patterns is deviatoric strain instead of full strain;

furthermore, the stress calculated by applying Hooke’s law is

not deviatoric stress because of the anisotropy of quartz (Chen

et al., 2011a). For the example of a deviatoric strain tensor (in

the fixed sample coordinates),

" ¼
0:5 0:3 0:2
0:3 0:4 0:6
0:2 0:6 �0:9

0
@

1
A� 10�3;

for a quartz single crystal that is oriented with its c axis parallel

to the sample z axis and the a axis parallel to the x axis, the

stress tensor acting on the crystal will be

� ¼
14 17 12

17 49 68

12 68 �84

0
@

1
AMPa

in the sample coordinates. However, if the orientation of the

crystal is wrongly indexed because of the 60� ambiguity, an

erroneous stress tensor,

� ¼
57 31 34

31 6 72

34 72 �84

0
@

1
AMPa;

will be computed after conversion to the same sample coor-

dinates (Nye, 1953). Comparing these two stress tensors, it is

found that all components are dependent on the orientation,

except that the normal stress along the z direction remains

unchanged, because the two orientations share the same c axis.

Two common methods can be applied in order to obtain the

full stress tensor. One is to measure the energy/wavelength of

a single reflection (Chung & Ice, 1999). The other is an esti-

mation based on ‘reasonable’ assumptions; for example, in

thin films sometimes the out-of-plane stress (�zz) is assumed to

be zero (Choi et al., 2003), while in bulk samples in some cases

the stress is assumed to be hydrostatic (Chen et al., 2009).

Figs. 4(b)–4(d) display the three normal components of the

stress tensor in the sample coordinates. White curves repre-

sent grain boundaries or twin boundaries, while separated

white spots could be caused by either incorrect indexing or

very high stress. Tensile and compressive stresses are defined

to be positive and negative, respectively. It is shown that the

stress is mainly tensile along the x direction, and compressive

along the y and z directions. These values are compatible with

the reported fracture stresses in the single crystal, which were

about 250 MPa in compression and 120–430 MPa in tension

(Fitzgerald, 1960). No obvious relationship between the stress

distribution and Dauphiné twinning can be seen from the

normal stress components in the x and y directions; however,

the compressive normal stress in the z direction in the twin

domain is significantly higher (more negative) than that in the

parent domain. The statistics for each normal component of

the strain and stress tensors are shown in Table 2. Our

observation agrees with the observations that Dauphiné

twinning can be imposed mechanically by high transient

stresses (Schubnikow & Zinserling, 1932), such as during

meteorite impact or seismic failure. For example, in shocked

quartzite from Vredefort, twin boundaries identified by elec-

tron backscatter diffraction could be associated with defor-

mation lamellae (Wenk, Janssen et al., 2011) and these

deformation lamellae contained large residual strains (Chen et

al., 2011b). The lattice strain study assumed hexagonal

symmetry for quartz. It would be interesting to see if a trigonal

identification would show a switch in stresses across twin

boundaries.

5. Conclusions

An improved method based on diffraction intensities has been

developed to unequivocally index the LPs of trigonal crystals

with primitive Bravais lattices. The method has been applied

to trigonal �-quartz. The crystal orientation distribution map

of a deformed quartz crystal displays Dauphiné twin bound-

aries. Combining the unequivocal orientation and the devia-

toric strain tensor, a correct stress tensor is obtained at each

position, which has not been achieved before (Kunz, Chen et

al., 2009; Chen et al., 2011b).

Besides quartz, the newly developed LP indexing method

can be applied to other trigonal crystals and appears useful for

any crystal structures displaying strong pseudosymmetries.

Furthermore, our method of fitting the reflection intensity,

which includes information on the atomic positions within the

unit cell, is a first step towards crystal structure refinements

using Laue diffraction. An analogous algorithm has been

implemented in the current version of XMAS on Beamline

12.3.2 of the Advanced Light Source at Berkeley.
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