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In situ synchrotron study of 
electromigration induced grain 
rotations in Sn solder joints
Hao Shen1, Wenxin Zhu1, Yao Li1, Nobumichi Tamura2 & Kai Chen1

Here we report an in situ study of the early stage of microstructure evolution induced by 
electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray 
microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels 
with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, 
and rigid grain rotation is observed only in the two grains within the current crowding region, where 
high density and divergence of electric current occur. Theoretical calculation indicates that the trend 
of electrical resistance drop still holds under the present conditions in the grain with high electrical 
resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with 
the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries 
suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which 
undergo displacive deformation, is accomplished via diffusional process mainly, due to the high 
homologous temperature.

The deleterious electromigration (EM) phenomenon becomes more severe with the current trend of miniaturi-
zation of electronic devices, for both interconnect lines and solder joints1,2. Tremendous efforts have been made 
to study not only the formation of voids at the cathode end and extrusions at the anode end, but also the micro-
structure evolution of the materials induced by the high electric current density at even earlier stage, well before 
the failure of the electronic devices. Grain rotation has been reported in all the metals used in interconnect com-
ponents, including Al3–5, Cu6,7, and β -Sn8,9. In face-centered cubic (FCC) metals Al and Cu, rotation of several 
degrees is realized via the generation of geometrically necessary dislocations (GNDs) and geometrically necessary 
boundaries (GNBs) under the stress gradient created by EM. β -Sn has a body-centered tetragonal (BCT) crystal 
structure and its electrical conductivity10 and self-diffusivity11 are anisotropic with greater values along a- and 
b-axes than along c-axis. In β -Sn strip lines, grain rotation of tens of degrees is observed accompanied with grain 
growth in a mechanism to realign the high electrical conductivity crystal direction with the electric current flow. 
The resulting large resistance decrease can cause electric current fluctuations and impact the reliability of the Sn 
components. However, it is not yet clear if similar phenomena also take place in Pb-free solder joints, which are 
mainly composed of β -Sn. On one hand, because the electric current direction and density in a solder joint are 
more inhomogeneous than in strips due to the complicated line-to-bump configuration in flip chips, current 
crowding effect has to be taken into account12,13 and therefore the stress state in the current crowding region 
is expected to be more inhomogeneous. On the other hand, hillock growth induced by EM has been observed 
under scanning electron microscope (SEM)14, and elastic compressive transient stress has been detected near the 
anode current crowding region and quantitatively measured15, so it is of interest to understand how the materials 
undergo plastic deformation when the stress reaches yield values. If grain growth observed in the Sn strips is 
attributed to the thermomechanical deformation induced by EM, it is interesting to ask what triggers the growth 
at the initial stage.

Here we study the early stage of the evolution of crystal orientation in β -Sn grains induced by high density of 
electric current in a Pb-free solder joint using synchrotron polychromatic X-ray microdiffraction (μXRD). Under 
the experimental conditions applied in this study, grain growth is not observed, and rotation of approximately 
half a degree is detected in the grains within the current crowding region only. The investigation of the evolution 
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of electrical resistivity leads us to attribute the driving force of grain rotation to the minimization of electrical 
resistance. The study of the evolution of Laue diffraction peak shape shows no generation of GNDs and GNBs, 
indicating a rigid rotation mechanism in stark contrast to the dislocation slip mediated rotation in FCC Al and 
Cu metals and grain growth mediated rotation in Sn strip lines. The grain rotation is achieved via diffusional 
deformation induced by the unbalanced atomic diffusion in the current crowding region.

Results
The cross-section of a Pb-free Sn-based solder joint was raster scanned with μXRD before and during the EM 
test, and 11 scans were made in total within a 43 h period. More experimental details are given in the Methods 
section. To express the crystal orientation, a Cartesian coordinate system O-XYZ was established, with its X- and 
Y-axes parallel with the horizontal and vertical scanning directions, respectively, and its Z-axis perpendicular 
to the sample surface (shown in Fig. 1). Two dimensional orientation maps were generated by indexing all the 
Laue diffraction patterns. Fig. 1a,b show the crystal orientation distributions of the cross-section of the Sn solder 
joint along the X- and Y-scanning directions, respectively, before the EM test. Black curves in Fig. 1a,b display 
the grain boundaries, which are defined as disorientation angles greater than 5° between two adjacent pixels, and 
herein 34 grains are counted in the maps16. Most of the grains, especially in the middle and right half of the solder 
joint, show green and purple color in Fig. 1a,b, respectively, indicating preferential crystal orientation. This pref-
erential texture is also evident from the inverse pole figures, shown in Fig. 1c,d.

In the EM experiment, the electric current flows from the bottom left to the top right of the solder joint as 
indicated by the red arrow, and the upper-right corner (red ellipse in Fig. 1a) is the current crowding region, 
where the current density is about one order of magnitude higher than other regions and where high current 
density gradient exists12. Seven grains in the electron wind force impacted region are selected and numbered for 
detailed study and their microstructures are tracked throughout the 11 scans. The angle between the c-axis of the 
selected grains and the electric current direction is 45° or higher (listed in Table 1), which suggests that in this 
specimen, the self-diffusion of Sn plays a more important role than the fast diffusion of Cu in Sn17.

Figure 1. Crystal orientation distribution in the solder joint before the EM test obtained from μXRD.  
(a,b) The orientation maps and their inverse pole figures of the in-plane X- and Y-directions, respectively. 
Electric current flow direction as well as the current crowding region are marked, and 7 grains are numbered for 
detailed study.

Grain No. 1 2 3 4 5 6 7 8

Angle (deg) 46.9 84.6 54.9 79.4 87.4 61.3 86.7 69.4

Table 1.  The angle between crystal c-axis and local electric current direction before EM test.
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The orientation maps obtained from each scan are carefully compared to monitor the orientation, shape, and 
size evolution of the selected grains. The shape evolution of the grain labelled “Grain 1” is plotted via intensity 
maps. Such intensity maps are obtained by first indexing all the Laue patterns from this crystal grain, and then 
tracking the intensity of a specific diffraction peak. It is noted that this peak should show up at the same position 
on all the Laue patterns in this grain. Here we choose the (271) peak. The integrated intensity of peak from all 
patterns is recorded, and a 2D contour map is plotted with the color coding intensity values (Fig. 2). It can be seen 
that the morphology and size of Grain 1 remain unchanged under the high density electric current stresses within 
the spatial resolution (3 μm, determined by the scanning step size) of this study. The same methodology is applied 
to all the other grains. No monotonic change of grain size is observed, and the size fluctuation of all the tracked 
7 grains is less than 2 pixels, caused by sample drift and temperature fluctuation during the measurement, suggest-
ing that no obvious grain growth is triggered by the electric current. The color of all the 7 grains in the orientation 
maps remains unchanged through the 11 scans, indicating no dramatic rotation of tens of degrees as what was 
reported in the Sn strips8 or appearance of cyclic twinning17.

The stability of the grain size and morphology provides an opportunity for a more quantitative and detailed 
study of the orientation evolution. Three identical positions close to the center of each grain are pinpointed in 
each scan, and the relative rotation with respect to the orientation before EM test at each position is computed, 
averaged, and exhibited in Fig. 3. Grain 1 and Grain 2, both of which are inside the current crowding region under 
much higher electric current and current gradient, rotate about 0.6° and 0.4° respectively, well above the angular 
resolution of μXRD18,19, and the rotation rate remains almost constant at 0.014° and 0.009° per hour, respectively. 
From Table 1, we see that the angle between the c-axis and the current flow direction of Grain 1 is relatively low, so 
it is not surprising to see it rotating, because it is known that β -Sn reorients to reduce its resistance under electric 
current stressing8,9. However, it is surprising that Grain 2 also rotates, because its c-axis is nearly perpendicular 
to the current direction, which means that its electrical resistivity is already close to its theoretical minimum. 
Similar to what has been reported previously8, grain rotation does not respond to any twinning mode of β -Sn20. 
As expected, the rotation angles detected in this study are much smaller than in the previous one, because of the 
mild experimental conditions employed here, which provides an opportunity to investigate the onset of the grain 
rotation phenomenon.

Discussion
Grain rotation has been unambiguously detected in our study. Previous studies show that the driving force of 
EM-induced grain rotation in β -Sn is the lowering of the electrical resistance of the system8,9. Because of the 
anisotropic crystal structure of β -Sn, the electrical conductivity σ  along a certain direction can be calculated as 
follows21:

Figure 2. Shape mapping of Grain 1. By plotting the spatial distribution of (271) Laue peak intensity from 
each μXRD scan, the morphology and size of Grain 1 are mapped as a function of EM time. By this approach, 
three positions close to the center of the grain are pinpointed in each scan to investigate the orientation 
evolution.
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σ σ θ σ θ σ θ= + + .cos cos cos (1)a a b b c c
2 2 2

where θ i are the angles between the unit cell basis vectors i (i =  a, b, or c) and the electric current direction, and 
σ i denote the electrical conductivities along the unit cell vector directions. Because of the tetragonal symmetry, 
we have:

σ σ= (2)a b

And since:

θ θ θ+ + =cos cos cos 1, (3)a b c
2 2 2

equation (1) simplifies as:

σ σ σ σ θ= + −( )cos (4)a c a c
2

From eq. (4), it can be seen that the conductivity of Sn is a function of θ c only, independent of θ a and θ b. 
However, measuring θ c is not easy because the local current direction cannot be derived accurately from the 
measurements, especially considering that the depth information is missing due to the bulky shape of the solder 
joint. Therefore, the evolution of the angle between the c-axis of all 7 crystal grains and the global electric current 
direction (Δθ c) is measured instead, i.e. it is assumed that the electric current direction at any local position of the 
solder joint does not change as a function of time throughout the performed EM test. This assumption is easily 
satisfied in this study because the testing condition is mild and no resistance change is observed during the EM 
test. As displayed in Fig. 4a, Δθ c goes positive for Grain 1, indicating that Grain 1 has its c-axis reoriented more 

Figure 3. Grain rotation angle as a function of time of all 7 grains. Rotation angles are calculated from crystal 
orientation matrices, but rotation axes are not shown in this plot. Rotation is induced by the high density of 
electric current stressing in Grain 1 and 2, but in other grains only orientation fluctuation is observed due to the 
temperature instability.

Figure 4. Electrical resistivity evolution resulted from the grain rotation. (a) The time dependence of 
θ c, which is defined as the angle between the crystal c-axis and electric current direction. (b) The calculated 
electrical resistivity σ  of all grains. Both θ c and σ  are found to change in Grain 1 only, although Grain 2 rotates as 
well.
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perpendicular to the electric current direction. Interestingly, Δθ c of Grain 2, similarly to all other grains, remains 
close to zero throughout the EM test. In other words, the rotation of Grain 2 is mostly about the c-axis, and the 
angle θ a between its a-axis and the current direction decreases (Figure S1).

Using the physical constants obtained from literature (σa =  13.25 μΩ cm, σc =  20.27 μΩ cm)10 in eq. (4), the 
calculated results for resistivities are shown in Fig. 4b. Grain 1 becomes more electrically conductive, which obeys 
the trend of lowering of the electrical resistivity, while the rotation does not induce any conductivity change in 
Grain 2, because its c-axis is close to a right angle with respect to the electric current direction and its resistivity is 
already low. To uncover the possible driving force of the rotation of Grain 2, the relative orientation of Grain 2 and 
its adjacent grains (Grain 3 to 5) are calculated and plotted in Fig. 5. It is found that the angles between the a-axes 
of Grain 2 and all three grains are decreasing during the period of EM testing, perhaps to lower grain boundary 
energy. Since the self-diffusivity and electrical conductivity of β -Sn are much higher along the a-axis than along 
the c-axis, it is easy to understand that the diffusivity of Grain 1 increases as it rotates, resulting in a more signifi-
cant EM effect deleterious to the Sn solder joint.

Grain rotation is usually achieved via the generation or elimination of GNDs and GNBs, resulting in the var-
iation of dislocation density in a crystal grain or along the subgrain boundaries. To study that effect, we look at the 
Laue diffraction peak shapes of Grain 1 and Grain 2 from all the 11 scans. Grain 1 is made of two subgrains, as 
suggested by the pair of subpeaks in the Laue diffraction pattern. First of all, the pair of subpeaks always coexists 
in all the 11 scans, and the disorientation angle between the pair does not vary with time (Fig. 6). This indicates 
that the subgrain boundary exists prior to and survives the EM test, and the density of the unpaired dislocations 
grouped in the subgrain boundary remains constant22. Secondly, careful observations of the shape of the subpeaks 
show that they remain basically unchanged through the experiment. As shown in the insets of Fig. 6, the (051) 
subpeak pair remains sharp when the Sn metal is stressed by the high electric current density. No anisotropic 
streaking or isotropic broadening of the peaks is detected, showing that the applied electric current does not 
change the density of either unpaired or paired dislocations in both subgrains23,24. The case for Grain 2 is simpler, 
because only one set of Laue peaks is detected, indicating no subgrain boundary. Similarly to Grain 1, no obvious 

Figure 5. Evolution of the angles between the a-axes of Grain 2 and Grains 3 to 5. It shows that the a-axis of 
Grain 2 is reoriented to be more parallel with its neighboring grains.

Figure 6. Disorientation angle and peak shape evolution in Grain 1. The disorientation angle between the 
pair of subgrains and the peak shape keep almost unchanged with time, suggesting the constant density of 
dislocations in the grain.
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streaking or splitting is observed in all 11 scans. This comprehensive analysis suggests that the microstructure of 
the GNDs and GNBs does not change through the duration of the electromigration test.

We propose that the observed rigid grain rotation is induced by divergence of the atomic diffusion in aniso-
tropic β -Sn. Grain rotation is detected in the two grains lying within the current crowding region only. There, the 
electric current density and electron wind force are more than an order of magnitude higher than in the body of 
the solder joint12, leading to faster atomic diffusion. Moreover, the current density and direction in this region 
are more inhomogeneous, which results locally in highly non-uniform atomic diffusion, in terms of both the 
motion direction and motion flux. Consequently, such non-homogeneous stress may provide the grains with 
the necessary aggregate torque for rotation, based on the dynamical theory of diffusion accommodated grain 
rotation25. In contrast with previous observations and simulations in metals with relatively high melting point 
such as Al and Au, in which grain rotation is accomplished by displacive deformation (dislocation slip and sub-
grain coalescence)26,27, our grain-by-grain study of the Laue diffraction peak shape and subgrain disorientation 
evolution indicates no significant dislocation motion, generation, or elimination in β -Sn. Our finding agrees well 
with the previously proposed mechanism of β -Sn grain rotation9 in which diffusion played the most important 
role. A recent in situ study of the deformation behavior of nanocrystalline Sn pillar inside a transmission electron 
microscope at room temperature suggests that diffusional deformation could overwhelm displacive deforma-
tion when the specimen size is below a critical value28. In our study, both Grain 1 and Grain 2 are larger than 
100 μm2. Considering that β -Sn has a low melting temperature Tm of 505 K at ambient pressure, and that the EM 
testing temperature is almost 70% of the Tm, it is not surprising that the diffusion rate at such high homologous 
temperature is fast compared to the low strain rate generated by the mild EM testing condition, leading to stress 
accommodated grain rotation to occur in large grains via diffusion dominated deformation. This finding helps 
understand not only the onset of grain rotation, but also the EM-induced whisker growth, which is another 
important reliability concern in Sn solder joints. Because displacive deformation usually takes place relatively 
quickly and dislocation motion releases stress easily29–32, diffusion is the more favored deformation mode for Sn 
whisker growth, which requires a continuous and sustained compressive load33,34.

From the previously reported experimental and simulation work, grain growth is expected accompanying 
with grain rotation8,9,25–27. The measured decrease of the angles between the a-axes of Grain 2 and its neighboring 
grains agrees with this trend. This is also confirmed by our own experience in a different set of experiments than 
those described in the present manuscript. When carrying out the EM test at higher temperature (150 °C) on an 
identical solder joint to accelerate the experiment (Figure S2), grain growth is clearly visible after 28 h.

In summary, taking advantage of the high spatial and orientation resolution provided by synchrotron Laue 
X-ray microdiffraction, we investigated in real time the grain-by-grain crystal orientation evolution of a Pb-free 
Sn-based solder joint under EM at the early stage before any resistance change or structure failure is detected. 
Grain rotation is observed in the two grains within the current crowding region only. Because of the high magni-
tude and high gradient of electric current density, divergence of atomic diffusion is expected in this region, and 
thus the stress state in this region becomes highly non-homogeneous, the grain boundary energy becomes unbal-
anced, and eventually the required aggregate torque for grain rotation is achieved. Furthermore, accompanying 
grain rotation, the material undergoes diffusion dominated deformation, instead of the more common displacive 
deformation, and thus no dislocation density and subgrain boundary structure change is detected. The electrical 
resistivity change resulting from the orientation change is computed, revealing that at this initial stage of EM and 
with such a small rotation angle, the rule of electrical resistance drop still holds in the grain with high electrical 
resistivity, while the other grain with low resistivity reorients to have its a-axis more parallel with the ones of its 
neighboring grains.

Methods
The sample used in this study was from a Pb-free flip chip (Sn− 0.7% Cu). The configuration of the flip chip has 
been described elsewhere35. For pretreatment, the flip chip was successively cut into four pieces, ground using 
SiC sand papers and polished to mirror finish. To stabilize the microstructure and eliminate the residual stress 
introduced in the polishing process, the sample was annealed at 150 °C for 2.5 h. It was stressed by electric current 
at a constant average current density of 1.25 ×  104 A/cm2 at (75 ±  2) °C for 43 h. The test condition was mild and 
no resistance change was detected during the entire process. Before and during the EM test, the cross-sectioned 
solder joint was scanned continuously under the microfocused polychromatic X-ray beam on Beamline 12.3.2 
at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL)36. The angle between the 
sample cross section and the incident X-ray beam was kept at 45°. The raster step was 3 μm and the exposure time 
was 0.5 s per point. The X-ray beam was focused to about 1 ×  1 μm2 using a pair of Kirkpatrick-Baez mirrors and 
the penetration depth of the X-ray beam within the energy range of 5 to 24 keV in pure Sn was estimated to be 
about 2–20 μm. At each scanning position a Laue pattern was recorded in reflection geometry using a MAR 133 
X-ray CCD detector which was mounted about 8 cm above the sample and 90° with respect to the incident beam. 
Each scan took about 4 h and contained 3000 Laue patterns, and a total of 11 successive scans were recorded 
throughout the EM test.

The Laue patterns were analyzed using the software package XMAS37. Diffraction peak positions were deter-
mined by fitting each reflection intensity profile with a 2D Gaussian function. The diffraction geometry, including 
the sample-to-detector distance, the center channel on the detector, and the relative tilts of the detector, was first 
calibrated by indexing a Laue pattern of a strain-free single crystal silicon chip by minimizing the deviation of 
the angles between the calculated peak position and the experimental data. All the Laue patterns taken on the 
specimen were indexed using that same calibration. This approach secures high angular resolution (0.01°) for 
crystal orientation18,19, which is important for the investigation of the crystal orientation evolution. Furthermore, 
by studying diffraction peak shapes, information on defects was also obtained, which provides essential clues 
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for characterizing the microstructure of metallic materials. The micron-sized spatial resolution provided by this 
technique, which is one of the essential differences comparing to diffraction line profile study method38, offers an 
opportunity for grain-by-grain intragranular investigation. This technique has been widely applied in reliability 
study, not only in solder joints, but also for through-silicon vias39 and three-dimensionally printed alloys40,41.
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