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In the information era, the demand for data storage and process-
ing is increasing rapidly,[1] leading to active investigations of
novel materials for next-generation nonvolatile memory[2–4]

and neuromorphic computing chips.[5–7] Chalcogenide phase-
change materials (PCMs) are leading candidates to realize these
aims.[8] Recently, the first PCM-based commercial product, 3D
Xpoint, has been successfully released into storage and memory
markets, bridging the performance gap of flash and dynamical
random access memory (DRAM). Phase-change memory utilizes
a strong contrast in physical properties between the crystalline
(logic “1”) and amorphous states (logic “0”) of PCM, such as

Ge2Sb2Te5 (GST),[9] to store binary infor-
mation. The fast and reversible switching
between these two states can be realized
via crystallization and amorphization
processes, corresponding to writing (SET)
and erasing (RESET) operations in PCM-
based devices.[10] In addition, a series of
continuous resistance states can be achieved
via partial crystallization and amorphization,
namely, cumulative SET and iterative
RESET, leading to novel types of applica-
tions in neuromorphic computing in PCM-
based electronics and photonics.[11–15]

The dynamical properties of PCMs are
important for PCM-based devices,[16–23]

since the material undergoes frequent
switching during device operation. The
crystallization (SET) of PCMs usually
takes tens of nanoseconds (ns), whereas

amorphization (RESET) is orders of magnitude faster, requiring
only hundreds of picoseconds (ps).[24] A preprogramming
strategy was applied in GST devices to enable an accelerated
SET process.[25] Moreover, the newly designed phase-change
alloy Sc0.2Sb2Te3 enables a SET speed of only 0.7 ns without
additional pretreatments,[26] due to the reduced stochasticity of
the nucleation process via robust Sc─Te bonds.[27] With regard
to the RESET process, the crystalline PCM is first melted above
the melting temperatures and then the liquid PCM is quickly
cooled down, reaching a supercooled liquid state. The RESET
state of PCM is strongly correlated with the melting and cooling
processes and is thus largely affected by the dynamical behavior
of liquid and supercooled liquid states, which has prompted
extensive studies on the dynamics and switching mechanisms
of PCM systems.[8]

Ab initio molecular dynamics (AIMD) simulations have been
applied extensively to investigate PCMs.[28] AIMD simulations
have played important parts in the fundamental understanding
of amorphous structures,[29–35] crystallization kinetics,[36–44]

liquid-to-liquid transition,[16,17] resistance drift,[45–48] and the
melting behavior.[49,50] However, the computational require-
ments for AIMD simulations remain an outstanding challenge.
For instance, a crystallization simulation for a system of 428
atoms over 700 ps took more than half a year of real-world time
using a state-of-art supercomputer.[26] This often unaffordable
expense, spent in solving Schrödinger’s equation for the elec-
tronic structures of PCM systems, restricts the further scaling
of model system sizes, and it often precludes the study of multi-
ple samples (for better statistics) when investigating complex
physical processes. Molecular dynamics (MD) simulations with
simplified, empirically fitted interatomic potential models can
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Studies of supercooled liquid phase-change materials are important for the
development of phase-change memory and neuromorphic computing devices.
Herein, a machine-learning (ML)-based interatomic potential for Ge2Sb2Te5
(GST) to conduct large-scale molecular dynamics simulations of liquid and
supercooled liquid GST is used. A pronounced effect of the thermostat
parameters on the simulation results is demonstrated, and it is shown how using
a Langevin thermostat with optimized damping values can lead to excellent
agreement with reference ab initio molecular dynamics (AIMD) simulations.
Structural and dynamical analyses are presented, including the studies of radial
and angular distributions, homopolar bonds, and the temperature-dependent
diffusivity. Herein, the usefulness of ML-driven molecular dynamics for further
studies of supercooled liquid GST, with length and timescales far exceeding those
that are accessible to AIMD is demonstrated.
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dramatically increase the speed of computations for various
covalent systems. However, it is difficult to construct reliable
empirical interatomic potentials for PCMs because of the large
structural and chemical complexity, and it is often not feasible to
accurately describe the complex interplay between different
atomic environments involving three or more elements.

The development of machine-learning (ML)-based interatomic
potentials has recently marked a promising advance in the
studies of disordered material systems.[51] Such ML potentials
reach a similar accuracy as do AIMD simulations, but at much
lower computing cost (for a recent perspective on the methodol-
ogy, see, for example, the study by Mueller et al.[52]). An ML
potential is a mathematical representation of the potential energy
surface for a given material, without a specific physically
motivated functional form, instead extracting the required infor-
mation from a large set of accurate reference data. The construc-
tion of a representative reference database is therefore a step
of critical importance in the development of any ML potential.
A variety of regression schemes and associated potential fitting
frameworks have begun to be widely used, including artificial
neural network (NN) models,[53,54] the Gaussian approximation
potential (GAP),[55] and moment tensor potential (MTP)
approaches,[56] and others.

The first NN-based potential in the PCM field was developed for
the binary phase GeTe,[57] which has since shed light on the liquid
dynamics,[58] crystallization kinetics,[59–61] dynamical heterogene-
ity,[62] aging processes,[45] nanowires,[63,64] and various physical
phenomena at the amorphous–crystalline interfaces in GeTe.[65]

More recently, the GAP framework together with the smooth over-
lap of atomic positions (SOAPs) structural descriptor[66] was used
to fit an ML potential for GST.[67] Subsequently, melt-quenched
GST models with up to 24 300 atoms were generated for the
analysis of glassy structures with respect to quench rates and
model sizes.[68] Moreover, 30 independent melt-quenched GST
models were made using GAP to create sufficient statistics for
the investigation of mid-gap states in amorphous GST.[69] To date,
GAP-driven studies in the PCM field have mostly focused on
structural characterization of liquid and quenched amorphous
GST, whereas the dynamical properties of the (supercooled) liquid
constitute another potentially useful topic of study.

In this article, we conducted GAP–MD simulations of liquid
and supercooled liquid GST in the microcanonical (NVE) and
canonical (NVT) ensembles using the large-scale atomic/molec-
ular massively parallel simulator (LAMMPS) package.[70] The
focus is strongly on NVT, for reasons specified later, using either
Nosé–Hoover (NH) [71,72] or Langevin thermostats.[73] The latter
was widely used in AIMD simulations of dynamical and struc-
tural properties of various PCM systems.[36,38] Using these
two thermostats, we defined protocols for the simulation of
(supercooled) liquid GST. In the following, we refer to these pro-
tocols as “GAP (NH)” and “GAP (L),” respectively. To implement
a Langevin thermostat, a damping parameter needs to be chosen,
which controls the fictitious friction in the system. The larger the
damping value is, the more viscous the system will be. Seven
different damping values were considered here, between
4.0� 10�3 and 10.0� 10�3 fs�1, corresponding to different
subprotocols of GAP (L). These are referred to as GAP (LX )
in the following discussions, with the running index X¼ 1 to 7,
as shown in Table 1. For comparison, we also performed

constant energy (NVE) simulations without a thermostat, which
is the formally correct approach for computing dynamical
properties (as discussed later).

To provide a reference for structures and dynamics of the
(supercooled) liquid systems, we performed AIMD simulations
using an established approach: the second-generation Car–
Parrinello scheme,[74] as implemented in the Quickstep code
of the CP2K package.[75] This scheme adapted a modified
Langevin equation to sample the canonical distribution, where
the damping parameter is split into two parts. One is an intrinsic
friction coefficient to compensate the dissipative dynamics and
the other is the Langevin friction coefficient,[76] both of which
were well optimized referring to Born–Oppenheimer MD
(BOMD) results in the previous work.[31] In the recent years, this
AIMD scheme has been applied to study the crystallization
dynamics of GST and yielded a growth velocity (�1m s�1)[36,37]

in fair agreement with the experimental work[21]; we therefore
consider it to be particularly useful as a reference method against
which to compare the GAP results. This is part of the reason why
we strongly focus on NVT (rather than NVE) simulations in this
article. In our AIMD simulations, Kohn–Sham orbitals were
expanded in a Gaussian-type basis set with triple-zeta plus polar-
ization quality, whereas plane waves with an energy cutoff of
300 Ry were used to calculate the charge density. The Perdew–
Burke–Ernzerhof (PBE) functional[77] and Goedecker pseudopo-
tentials[78] were used. Note that PBEsol[79] rather than PBE
density functional theory (DFT) data served as a reference for
the fitting of the GAP model that we use.[67] However, previous
AIMD work using these two functionals showed rather small dif-
ferences between them in how they describe structural properties
of (supercooled) liquid GST.[32,67] The Brilliouin zone of the
supercell was sampled at the Γ point. We used identical time-
steps, 2 fs, for GAP (NH), GAP (L), and AIMD simulations.

Atomic models of liquid and supercooled liquid GST were
generated via melting and cooling simulations. The key results
are based on a supercell which contains 198 atoms (44 Ge, 44 Sb,
and 110 Te atoms) in an 18.55� 18.55� 18.55 Å3 cubic box at an
experimental amorphous density of 5.88 g cm�3. However, to
evaluate possible system-size effects, we also considered three
larger cubic models containing 900, 3690, and 7200 atoms (edge
lengths of 30.72, 49.17, and 61.44 Å, respectively). Figure 1a
shows a direct comparison of system sizes between the 198-atom
and 7200-atommodels. Starting structures of all mentioned GST

Table 1. Thermostat setups of the GAP-based protocols as discussed in
this article.

Notations of GAP-based protocols Thermostat Damping values [�10�3 fs�1]

GAP (L1) Langevin 4.0

GAP (L2) 4.5

GAP (L3) 5.0

GAP (L4) 6.3

GAP (L5) 7.1

GAP (L6) 8.3

GAP (L7) 10

GAP (NH) Nosé–Hoover –
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models were first randomized at 3000 K for 30 ps, and then
quenched to 1200 K in 18 ps. The liquid GST models were held
above the melting temperature (�900 K) and then cooled to
500 K. During cooling, the (supercooled) liquid GST systems
were held at different temperatures (between 1200 and 500 K
in 100 K increments). They were equilibrated for 50 ps at each
increment, and then annealed for another 50 ps, where we
collected data for structural and dynamical analyses. Note that
the initial equilibration period is not considered in the evaluation
of properties. For each of the GAP (L), GAP (NH), and AIMD
protocols, four separate samples were generated with indepen-
dent thermal history to improve the statistical sampling.

The mean square displacement (MSD) is usually calculated to
characterize the mobility of the atoms in the simulation, defined
as a function of time, t, as follows

MSD ¼ hR2ðtÞi ¼ 1
N

�XN
i¼1

jRiðtþ t0Þ � Riðt0Þj2
�

(1)

where Ri denotes the coordinates of atom i, t0 is the initial point
in time, N is the number of atoms, and the sum runs over all
atoms. The MSD of our AIMD simulations at 1200 K was calcu-
lated based on atomic trajectories, as shown in Figure 1b.
Evidently, the MSD in the GAP (NH) simulations is almost twice
as large as that obtained for the AIMD ones (Figure 1b). We used
varying temperature damping parameters[71] (keyword “tdamp”
in LAMMPS) and Nosé chain length values (“tchain”) for
GAP (NH) modeling: these settings control how rapidly the tem-
perature is relaxed and how many thermostats are in the NH
thermostat chain, respectively. However, these did not affect
the results strongly (Figure S1, Supporting Information). We
used Langevin thermostats instead and computed the MSD
using GAP (L1 to L4) protocols. It is evident that, by choosing
a proper damping value, the MSD of atoms in our AIMD sim-
ulations (as a proxy for the general dynamics of the system) can
be very well reproduced by GAP (L3) simulations (Figure 1b).

Furthermore, we analyzed the temperature-dependent diffu-
sivity of GST as described by GAP (NH), GAP (L3), and
AIMD protocols. The diffusion coefficient, D, is computed based
on MSD results

D ¼ 1
6
∂
∂t
lim
t!∞

hR2ðtÞi (2)

In addition, the diffusion coefficient also follows the Arrhenius
equation, written in logarithmic form as a function of 1/T

lnD ¼ � E
kB

1
T
þ lnD0 (3)

whereD0 is a pre-exponential factor, kB is the Boltzmann constant,
and E denotes the activation energy. The computed logarithmic D
over 1000/T is shown in Figure 1c. In the liquid, both GAP (L3)
and AIMD predict almost the same diffusivity. A discrepancy
occurs in the supercooled liquid region from 800 to 500 K, in that
the atomic mobility in AIMD decreases slightly faster with T than
that in the GAP (L3) simulations (Figure 1c). By contrast, a rather
large deviation of diffusivity continuously exists between GAP
(NH) and AIMD from 1200 to 600 K, but disappears at 500 K,
which hints at a noted different description of the thermal motion
in the liquid and supercooled liquid GAP (NH) simulations. We
fitted our data to the Arrhenius equation and obtained the activa-
tion energy E and pre-exponential factor D0 for AIMD, GAP (L3),
and GAP (NH), respectively, as shown in Table 2. The activation
energies calculated from AIMD and GAP (L) protocols are in fair
agreement with that derived from experiments (E¼ 0.266 eV).[80]

We note that computed diffusion coefficients of GST may
strongly depend on the simulation protocol, as shown in Figure S2,
Supporting Information—which includes our AIMD data and
others[80,81] with different functionals and thermostats, as well
as experimental data for GST alloys, measured using an
oscillating cup viscometer.[80] The absolute diffusivities from

Figure 1. a) A direct comparison of system sizes between 198-atom and
7200-atom models of GST. b) The MSD curves of GAP (NH) and different
GAP (L) simulations at 1200 K were calculated to fit the MSD curve derived
from AIMD simulations. Four different damping values were considered,
i.e., 4.0� 10�3, 4.5� 10�3, 5.0� 10�3, and 6.25� 10�3 fs�1, correspond-
ing to four different protocols, namely, GAP (L1), GAP (L2), GAP (L3), and
GAP (L4). c) The diffusion coefficientsD of AIMD, GAP (L3), and GAP (NH)
simulations at 1200 K as plotted in a logarithmic form over 1000/T.
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GAP (NH) are further from the experimental values, whereas
the slopes of both GAP (NH) and experimental results with
temperature are almost the same. In addition, we performed
simulations in which we switched off the thermostat after equil-
ibration at the target temperatures, followed by GAP–MD simu-
lations in the NVE ensemble, leading to very similar results as
our GAP (NH) simulations and the AIMD (NVE) simulations
reported in the study by Rizzi et al.[81]. Therefore, on the one
hand, the temperature dependence of diffusivity is well recovered
by AIMD (NVE), GAP (NH), and GAP (NVE); on the other hand,
by carefully calibrating the settings of the Langevin thermostat,
GAP (L) simulations show the closest absolute agreement of
diffusivity with experimental results at 900 and 1000 K.

We also note that studies of crystallization kinetics of PCMs
require the use of well-optimized thermostats.[36–38,42–44] As
mentioned earlier, AIMD simulations using a second-generation
Car–Parrinello scheme and an Langevin thermostat[74] show an
average growth rate of �1m s�1 at �600 K, which increases to
�1.5 m s�1 at �700 K,[36,37] in good agreement with ultrafast
differential scanning calorimetry (DSC) measurements.[21]

Therefore, large-scale GAP (L) simulations that closely mirror
the AIMD reference are expected to lead to accurate descriptions
of switching behavior of supercooled liquid GST.

To analyze the atomistic structures obtained from the differ-
ent simulations, we studied short- and medium-range structural
features based on the radial distribution function (RDF;
Figure 2a) and normalized angle distribution function (ADF;

Figure 2b). There is an excellent agreement of RDF and ADF
between the two GAP protocols, indicating the near-
independence of local structural properties of liquid and super-
cooled liquid GST from the choice of thermostats. The overall
distribution of RDF and ADF from both GAP protocols is con-
sistent with AIMD, albeit small deviations remain. In AIMD,
there are lower coordination numbers within the first atomic
shell compared to GAP, measured by integration of the RDF
up to the first minimum, and this effect becomes more pro-
nounced at lower temperatures, such as 600 K (Figure 2a).
In all three systems, atoms are mostly in defective-octahedral
environments, correlated with a broad peak at 90� in the ADF
(Figure 2b). However, a slight preference for tetrahedral motifs
appears in AIMD at 600 K in comparison to GAP–MD, as the
AIMDADF shifts slightly to larger bond angles and has a broader
shoulder at �109�. System size effects were also evaluated based
on the same dynamical and structural analyses at 1200 K. We
observed very similar MSD, RDF, and ADF in all four models
with varying system sizes, i.e., 198, 900, 3690, or 7200 atoms,
when carrying out GAP (L3) simulations. Therefore, our discus-
sions, based on 198-atom models, are unlikely to be affected by
system size effects.

The analysis of homopolar bonds (Ge─Ge, Sb─Sb, and
Te─Te) reveals subtle structural differences between the GAP
and AIMD simulations, as shown in Figure 2c. The statistics
of homopolar bonds, intrinsically correlated with the distribu-
tions of primitive rings and local structural motifs,[27] are a good
indicator to describe short-range ordering, chemical-bonding fea-
tures, and dynamical properties of the system. The choice of cut-
offs used in the bond analysis for (supercooled) liquid GST is in
line with the study by Caravati et al.[31] In the liquid state above
900 K, the fractions of homopolar bonds in all the three simula-
tion protocols are nearly the same and decrease steadily as the
temperature goes down. When it comes to the supercooled liquid
regime, the fraction of homopolar bonds in AIMD continues to
slowly decrease with temperature, and then remains at �11%

Table 2. The calculated activation energy and pre-exponential factor for
three different protocols.

Protocol E [eV] D0 [�10�10 m2 s�1]

AIMD 0.260 446

GAP (L3) 0.241 373

GAP (NH) 0.305 1674

Figure 2. Structural characterization of liquid and supercooled liquid GST as described using different modeling methods, including GAP (NH), GAP
(L3), and the AIMD reference. a) RDF and b) normalized ADF for different protocols at 1200, 800, and 600 K, respectively. c) The fractions of homopolar
bonds in three different (supercooled) liquid GST structures (generated via AIMD, GAP (L3), and GAP (NH) simulations). Each data point indicates an
averaged value over four independent samples at a given temperature. The error bars, expressed as standard deviations of the calculated fraction,
represent the variations over 20 000 snapshots taken from four separate samples (5000 snapshots from each sample). Lines between data points
are guides to the eye.
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below 700 K. However, an abrupt decrease in homopolar bonds
is observed in GAP (NH) at 800 K, and the fast decrease in the
number of homopolar bonds continues upon further cooling,
leading to gradually enlarged deviations from AIMD. A similar
drop and a swift decrease also appear in GAP (L) but start at
700 K, which results in relatively more homopolar bonds found
in GAP (L) than in GAP (NH). The fractions of homopolar bonds
in GAP (L) and GAP (NH) are �5% and �3%, respectively,
at 500 K, much smaller than the AIMD result (�11%).
Furthermore, the statistics of different types of bonds reveal that
Sb─Sb bonds and Te─Te bonds contributed most to this discrep-
ancy in both GAP (L) and GAP (NH) protocols at lower temper-
atures (500 and 600 K) (Figure S3, Supporting Information).
In summary, the GAP (L3) protocols are structurally feasible
in liquid state (above 900 K) and supercooled liquid state at high
temperature (700–900 K). As the temperature decreases to 700 K
and below, both structural and dynamical deviations appear in
GAP (L3) protocols in comparison to AIMD.

We now study the supercooled liquid in more detail. To
calibrate the damping value for the accurate description of the
supercooled dynamics as compared to AIMD, we used the same
strategy as shown in Figure 1b. We chose different damping
values and calculated the MSD results of different supercooled
liquid GAP (L) protocols at 600 K (Figure 3a). The MSD curve
of GAP (L6) overlaps with the AIMD reference, hinting at similar

supercooled liquid dynamics in both simulations. We further
compared the short- and medium-range structural features of
AIMD, GAP (L3), and GAP (L6) protocols via RDF and ADF
analyses (Figure 3b,c). Both GAP (L3) and GAP (L6) led to almost
the same RDF and ADF, whereas a visible deviation still exists
compared to AIMD. The fraction of homopolar bonds increased
in GAP (L6) compared to that in GAP (L3), but was still lower
than that in AIMD. In short, by increasing the damping value
for the Langevin thermostat, we can access dynamical properties
of supercooled liquid GST at 600 K in excellent agreement with
AIMD. In contrast, structural deviations at low temperatures
between GAP–MD and AIMD can be mitigated but cannot be
eliminated fully.

Following the strategy discussed in the context of Figure 1a
and 3a, we also optimized the damping values at other temper-
atures during melting and cooling, and thus propose an
approach to simulate liquid and supercooled liquid GST using
adaptive GAP (L) protocols that aim to match the AIMD result
most closely. We used three different thermostat settings during
the simulation, i.e., GAP (L3) for the liquid from 1200 to 900 K,
GAP (L4) for the high temperature supercooled liquid from 800
to 700 K, and GAP (L6) for the low temperature supercooled
liquid from 600 to 500 K (Figure 4a). Calculated diffusion coef-
ficients are shown in Figure 4b. It is evident that, using these
calibrated damping values, we can access the dynamics of liquid

Figure 3. Structure and dynamics of supercooled liquid GST at 600 K. a) A series of MSD curves were calculated, derived from different GAP (L) protocols,
including GAP (L3), GAP (L4), GAP (L5), GAP (L6), and GAP (L7). The MSD curve of the GAP (L6) simulation overlaps best with that of the AIMD one at
600 K. b) RDF analysis and c) ADF analysis are performed for AIMD, GAP (L3), and GAP (L6) structures. d) The statistics of homopolar bonds are
analyzed for three protocols. The error bars indicate the variations over 20 000 snapshots taken from four independent samples (5000 snapshots
from each sample) at 600 K.
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and supercooled liquid GST in very good agreement with AIMD
throughout the relevant range of temperatures. Yet, a structural
discrepancy between GAP (L) and AIMD remains below 700 K,
which requires further investigation.

In conclusion, we have shown that the combination of the
GAP ML potential and Langevin MD with a properly chosen
damping value can describe supercooled liquid GST in good
agreement with AIMD simulations, the latter being the current
de facto standard in atomistic modeling of PCMs. We note that in
principle, any type of reference, either from high-level simula-
tions or from experiment, can serve as a reference to optimize
the thermostat setups in GAP-based modeling. Our results
and analyses hint toward the usefulness of ML-driven simula-
tions for further studies of (supercooled) liquid GST, as well
as more complex physicochemical phenomena during switching
in memory devices.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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