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Abstract

Realization of brain-like computer has always been human’s ultimate dream. Today, the possibility of having this
dream come true has been significantly boosted due to the advent of several emerging non-volatile memory
devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the
most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and
low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic
circuit using phase-change materials as well as a comprehensive introduction of the currently available
phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the
technology of artificial neural networks. In this paper, we first present the biological mechanism of human
brain, followed by a brief discussion about physical properties of phase-change materials that recently
receive a widespread application on non-volatile memory field. We then survey recent research on different
types of neuromorphic circuits using phase-change materials in terms of their respective geometrical
architecture and physical schemes to reproduce the biological events of human brain, in particular for
spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated.
Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.
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Review
Background
Today, digital computer, commonly considered as a mile-
stone in the history of human life, has a pervasive influence
on every citizen’s daily activities involving business, educa-
tion, entertainment, and sports. As a physical device while
manipulated by the operational system, the prosperity of
the digital computer aggressively lies on the progress of
both hardware and software technologies. Recent techno-
logical developments on ultra-large-scale integration (ULSI)
allow millions or even billions of electronic components to
be integrated on a single semiconductor chip, significantly
improving the physical performances of the modern com-
puter. Under this circumstance, it is not too naïve to
imagine that human being will be govern by computer
machines one day that has been frequently described in

scientific fictions, particularly after the recent victory of
‘AlphaGo’ over the top human Go player [1]. However,
thanks to the architectural difference between computer
and human brain, it is not possible for digital computer to
outperform the biological brain in the near future. It is well
known that modern computer usually makes use of the so-
called von Neumann architecture that consists of three
main components [2], i.e. processor, main memory, and
bus, as shown in Fig. 1. The processor, also known as
central processing unit (CPU), comprises arithmetic logic
unit (ALU), control unit, and register. As implied by their
names, ALU is responsible for all the arithmetic and logical
operations such as addition, subtraction, AND, and OR
functions, while the control unit decodes the instructions
and controls all other internal components of the
CPU. The register is mainly used to store the data
during execution. After all the essential computations,
the processed data is sent back from the CPU to the
main memory where the data is stored through the
data bus, whereas address bus and control bus are
employed to determine the address of the data inside
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the memory and the type of the operations (e.g. write
and read) between CPU and memory, respectively.
According to above descriptions, an apparent feature

of modern computer adopting von Neumann architec-
ture is that CPU where data is processed is separated
from the main memory where data is stored by bus. As
a consequence, CPU needs to retrieve data from the
main memory for any necessary processing, after which
data is transferred back to the main memory for storage.
The fact that bandwidth between CPU and the main
memory (also called data transfer rate) is much lower
than the speed that a typical CPU can work severely
limits the processing speed of the modern computer,
which is known as von Neumann bottleneck. In order to
circumvent the von Neumann bottleneck, several ad-
vanced technologies such as Cache memory, multi-
threading core, and low-latency command channel have
been proposed in the past to increase the processing
speed of the modern computer. These approaches seem
to be viable for the cases with less repeated operations
that only cope with relatively small amount of the pro-
cessing data, while failing to satisfy the demands from
data-centric applications that usually require often-
repeated transient operations on a vast amount of the
digital data such as real-time image recognition and
natural language processing [3]. Therefore, the current
consensus is that it is inevitable to have an unprece-
dented revolution from von Neumann architecture to
non-von Neumann architecture so as to utterly eliminate
the von Neumann bottleneck.
Fortunately, an ideal computing system that adopts

non-von Neumann architecture has been existing for
millions of years, which is the human brain. The human
brain comprises many types of cells within which the
core component is called neuron [4], as shown in Fig. 2.

The highly importance of the neuron for human brain
stems form its ability to process and transmit informa-
tion through electrical and chemical signals. According
to Fig. 2, a neuron is made up of a cell body (also called
soma), dendrites, and an axon. Information usually in
the form of an electrical or chemical signal is transferred
from an axon of one neuron towards the conjunction of
its axon and dendrites of the neighbouring neurons, also
known as synapse. The synapse can evaluate the import-
ance of the received information by integrating it with
the strength of the synapse (synaptic weight), and subse-
quently distribute information to even more neurons
through their respective axons. Differing from the digital
computer, human brain performs the information pro-
cessing during the transferring period, and there is only
a single value by the time that information reaches the
neighbouring neurons. This clearly indicates an encour-
aging finding that human brain allows information
storage and processing to occur at the same time in the
same place. Due to this attractive feature, human brain
whose neural networks consists of ~1011 neurons and
~1015 synapses enables an operation frequency of 1–
10 Hz on the power budget of 10–100 W [5], corre-
sponding to an energy consumption of 1–10 fJ per
synaptic event [5].
Thanks to the exceptional capability of the human

brain, it is natural to conceive the possibility of building
a super-intelligent computer that reproduces the neural
networks of the human brain to completely overcome
the von Neumann architecture, leading to the prosperity
of artificial intelligence (AI). One possible way to achieve
brain-like computer is to simulate the behaviours and
connections between biological neurons inside the human
brain using conventional computers or even so-called su-
percomputers, replying on the recent progress of the soft-
ware algorithms. In spite of its advantageous flexibility
and availability [6, 7], the software-based approaches fail
to cope with large-scale tasks such as pattern recognition,
learning, and intelligent cognition [8, 9], and also causes
several orders of magnitude higher energy consumption
than the human brain [10]. In this case, vast majority of
research efforts has been recently devoted to exploiting a
novel hardware architecture that can emulate both the
biological structure and the biological function of the
human brain, delivering the debut of neuromorphic en-
gineering that can be dated back to 1980s [8]. However,
the concept of neuromorphic has not received con-
siderable attentions until the presence of the emerging
non-volatile memories (NVM) such as Ferroelectric
random access memory (FeRAM) [11, 12], magnetic
random access memory (MRAM) [13, 14], phase-change
random access memory (PCRAM) [15, 16], and re-
sistive random access memory (ReRAM) [17, 18], as
well as the physical realization of the early proposed

Fig. 1 von Neumann architecture of modern computer
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‘memristor’ concept [19–21]. These innovative devices
are capable of storing information on an ultra-small
region during ultra-short interval with ultra-low energy
consumption, closely resembling the attractive features of
the human brain. Perhaps most enticingly, some physical
properties of these devices that depend on their previous
states can be successively tailored by the external stimulus
and be stored even after power-off, very analogous to the
behaviours of the biological synapse. As a result, several
nanoscale electronic devices that include metal oxides
[22, 23], solid-electrolytes [24, 25], carbon nanotubes
[26, 27], organic electronics [28, 29], spin transfer
torque MRAM [30, 31], and phase-change memory (PCM)
[32] based on the aforementioned technologies have been
proposed to systematically mimic the biological func-
tion of the human brain, in particular the learning
and memorization capabilities govern by the synapse.
It should be noticed that due to the extremely com-
plexity of the human brain, none of these available
electronic devices has exhibited the promising poten-
tial to prevail or even meet the physical performances
of the biological synapse to date. However, the nano-
scale electronic synapse based on PCM technology
seems to be more promising than its compatriots, as
phase-change materials has already gained widespread
applications from the conventional optical disc [33] to
the recently emerging all-photonic memory [34], and
PCRAM is considered as the leading candidate for the so-
called universal memory for NVM applications [35, 36].
More importantly, a wealth of theoretical knowledge and
practical experiences that concerned the electrical, optical,
thermal, and mechanical properties of the phase-change
materials has been accumulated along with the develop-
ment of the PCMs that has been under intensive study for
the last two decades. For above reasons, a comprehensive
review about physical principles and recent developments
of the nanoscale electronic synapse using phase-change

devices becomes indispensable in order to help researchers
or even ordinary readers to deeply understand the physical
way that the phase-change electronic synapse can imitate
the biological synapse, and thus stimulate more research
efforts into the establishment of the design criterion and
performance requirement for the future artificial synapse
device to ultimately compete with the human brain.
Here, we first introduce the fundamental biological

behaviours of brain neurons and synapses that are the
prerequisites for designing appropriate artificial synap-
ses, followed by a brief overview of the phase-change
materials and its applications on NVM applications.
Then, we present different types of nanoscale electronic
synapse using phase-change devices as well as their re-
spective advantages and disadvantages for neuromorphic
applications. The future prospect of the artificial synapse
using phase-change materials is also discussed.

Biological Behaviours of the Human Brain
Briefly speaking, the patterns of synaptic transmissions
between different neurons inside the brain can be simply
classified into electrical synapse and chemical synapse.
Electrical synapse transmits signal directly by the drift of
ions without involving any chemical reaction. In this
case, electrical synapse usually exhibits a more rapid sig-
nal transmission that allows signal to flow bidirectionally
between neighbouring neurons than chemical synapse
and is frequently found on a nerve system that requires
quick responses. However, electrical synapse is passive,
which means that the signal received in the receiver side
is the same as or smaller than the initial signal from the
sender side, called ‘lack of gain’. Chemical synapses
usually divided into excitatory synapse and inhibitory
synapse allows signal to be transmitted unidirectionally
between neuron sender (called presynaptic neuron) and
neuron receiver (called postsynaptic neuron) through
the release of neurotransmitter from presynaptic neuron

Fig. 2 Neuron structure in the human brain. Reprinted with permission from [4]
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and absorption of neurotransmitter from postsynaptic
neuron [37]. The certain type of chemical synapse is
completely determined by the receptors on the posts-
ynaptic membrane. It has been reported that the
gamma-aminobutyric acid (GABA) neurotransmitter is
an inhibitory receptor [38] that leads to an inhibitory
postsynaptic potential (IPSP) [39] and moves the post-
synaptic neuron away from depolarization threshold,
while glutamate neurotransmitter is an excitatory re-
ceptor [40] that exhibits an excitatory postsynaptic po-
tential (EPSP) and drives postsynaptic neuron towards
the depolarization threshold that can activate an action
potential [41]. Various neurons can be connected to
one certain neuron via their axon terminals and release
neurotransmitters that stimulate excitatory and inhibi-
tory receptors to yield EPSPs and IPSPs; subsequently,
postsynaptic neuron integrates the EPSPs with the
IPSPs to determine whether to excite or ‘fire’ an ac-
tion potential or not. In this case, the resulting action
potential is transferred to the synapse cleft through
the axon, and merges the neurotransmitter vesicles
with the presynaptic membrane at the axon terminal,
thereby releasing the neurotransmitters into the syn-
apse cleft. After diffusing through the synapse cleft,
these neurotransmitters bind to and activate the re-
ceptor in the postsynaptic membrane, thereby chan-
ging the synapse weight. Such a chemical scheme is
schematically shown in Fig. 3 [42]. As chemical syn-
apse is known to be in charge of learning and mem-
ory, the ‘synapse’ mentioned in this review refers to
chemical synapse, unless otherwise stated. A more
detailed description of the biological behaviours of

the chemical synapse is presented below from chem-
ical point of view.
Note that neurons communicate with each other through

so-called action potentials that can be interpreted as the
transmitted electrical signals [43]. A liquid membrane sepa-
rates neuron whose intracellular components are rich in K+

ions from outside environment whose extracellular compo-
nent has high concentration of Na+ and Cl− ions. This non-
uniform ion distribution across the membrane polarizes the
membrane with a certain resting potential between −90
and −40 mV [44], when the cell membrane does not
experience any external stimulus, i.e. in its rest state. Never-
theless, when subject to an external electric stimuli above
some certain threshold, the ions can exchange through
voltage-gated ion channels that are activated by the change
of the electrical membrane potential and ion pumps
between intracellular and extracellular media to lower
the chemical potential gradient [45–49]. Such a re-
distribution of the ions across membrane leads to the
depolarization of the neuron, also known as action potential
firing responsible for the signal transmission from the
neuron soma to the terminal of the neuron axon [43].
However, this depolarized state would soon restore to the
previously rest state after Na+/K+ ion pumps recover its ion
distribution to the rest state, called sodium-potassium
adenosine triphosphatase (Na+/K+-ATPase) [50]. Therefore,
the state change of the neuron or cell membrane is consid-
ered as ‘elastic’ meaning no permanent change occurring
when the external stimuli exceeds the threshold value.
Although the change of neuron states exhibit elasticity,

the change of synapse weight however shows plasticity,
simply meaning that the change can either last for a long

Fig. 3 Structure of the neuron and synapse and schematic of the synaptic junction between the presynaptic neuron and postsynaptic neuron.
Reprinted with permission from [42]
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time or a short time. Given its durability, a long-term
activity-dependent synaptic plasticity has been widely
believed to account for learning and memory [51]. The
synaptic activity to induce a long-lasting increase on syn-
apse weight is named as long-term potentiation (LTP) that
is in charge of the long-term memory, whereas the synap-
tic activity to generate a long-lasting decrease on synapse
weight is known as long-term depression. LTP is believed
to be strongly related to the activities of the presynaptic
and postsynaptic neurons. When the presynaptic neuron
is activated, it releases various neurotransmitters within
which glutamate neurotransmitter acts as a principle role
in LTP [52]. The released glutamate is subsequently bound
to N-methyl-D-aspartate receptor (NMDAR) that opens
ion channels for both monovalent and divalent cations
(Na+, K+, and Ca2+), and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic receptor (AMPAR) that opens ion
channels for monovalent cations (Na+ and K+), which are
located on the postsynaptic neuron [52]. Accordingly, the
change of the electrical membrane potential causes the
depolarization of the postsynaptic neuron that opens
the voltage-gated ion channel of the NMDAR and
consequently results in an increase of Ca2+ concentration
that can be further enhanced through Ca2+ inward flux
through L-type voltage-gated calcium channels (VGCCs)
[53–57]. However, a weaker depolarization is unable to
completely displace the Mg2+ ions that block NMDA ion
channels and therefore prevents adequate Ca2+ ions from
entering the postsynaptic neuron, yielding a lower intra-
cellular Ca2+ concentration. This is considered as the

induction of LTD. Figure 4 shows the schematics of the
described process.
The mechanisms governing synaptic plasticity shown

in Fig. 4 still remain mysterious. One hypothesis attri-
butes the induction of synaptic plasticity to the relative
rates between the pre- and postsynaptic action poten-
tials also called spikes [58]. Based on rate-dominant
speculation, high-frequency stimulations induce LTP,
while low frequency stimulations bring about LTD, as
illustrated in Fig. 5.
An alternative to rate-dominant synaptic plasticity is

time-dependent synaptic plasticity that ascribes the cause
of long-term plasticity to temporal correlations between
pre- and postsynaptic spikes [59]. The origin of this
assumption can be dated back to 1949 when Donald Hebb
proposed his famous Hebbian learning rule: ‘When an
axon of cell A is near enough to excite cell B and repeat-
edly or persistently takes part in firing it, some growth
process or metabolic changes take place in one or both
cells such that A’s efficiency as one of the cells firing B, is
increased’ [60]. Hebb suggested that the activations of
pre- and postsynaptic neurons do not essentially induce
the long-term plasticity, but the relative spiking time that
is the time difference between presynaptic spike and post-
synaptic spike plays the most important role on synaptic
plasticity, usually referred to spike-timing-dependent plas-
ticity (STDP). As illustrated in Fig. 6, the situation that
presynaptic spike precedes postsynaptic spike results in
LTP, while the synapse undergoes LTD when presynaptic
spike lags postsynaptic spike [61].

Fig. 4 Potentiation procedures for a chemical synapse. The presynaptic activation releases glutamate neurotransmitters (Glu) that bind to NMDAR
and AMPAR. Only the AMPAR opens the ion channels for monovalent cations (e.g. Na+) when the postsynaptic neuron is at rest state or
polarized, while NMDAR opens the voltage-gated channels to allow Ca2+ to diffuse once the postsynaptic neuron is depolarized or activated.
Reprinted with permission from [53]
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The fundamental formula to mathematically depict the
STDP learning function is shown below [42]:

Δw ¼ ξ
�
ΔT
� ¼ aþe−ΔT=τ

þ
if ΔT > 0

−a−eΔT=τ
−

if ΔT < 0

(

ð1Þ
where Δw is the change on synapse weight, ξ denotes
the STDP function, ΔT is the relative time difference
between presynaptic spike (tpre) and postsynaptic spike
(tpost), and a± and τ± represent the scaling factor and the
time constant of the exponential function, respectively.
According to Eq. 1, four types of STDP updated func-
tions commonly adopted by computational models of
STDP synaptic learning can be readily derived [62],
giving rise to Fig. 7. It should be noticed that the cases
illustrated in Figs. 6 and 7a correspond to synapses with
positive weights (w > 0). Therefore, as long as ΔT > 0, the
synapse weight w is always strengthened due to the

positive sign of Δw. However, this learning rule does not
apply to some so-called inhibitory synapses with nega-
tive weights (w < 0), as an increase in weight would in
turn weaken the strength of the synapse. To resolve this
issue, an STDP learning rule with a similar shape to
Fig. 7b is required, since in this case decreasing the
weight would strengthen the synapse itself when ΔT > 0.
Such a relationship between Δw and ΔT, given by Fig. 7b,
is usually called anti-STDP learning function. Figure 7c,
d is the symmetric form of (a) and (b), respectively.
STDP can be further categorized into additive STDP and

multiplicative STDP. The learning function ξ of additive
STDP is irrelevant to the actual weight (w), but strongly
depending on the time interval (ΔT). Additive STDP
requires the weight values to be bounded to an interval
because weights will stabilize at one of their boundary
values [63, 64]. On the other hand, the learning rule of
multiplicative STDP relies on both actual synapse weight
(w) and the time interval (ΔT). In multiplicative STDP,

Fig. 5 Experimental demonstration of LTP and LTD in a biological synapse showing synaptic conductance as a function of time. a The solid circle
denotes the conductance arising from high-frequency tectonic stimulation which results in LTP, and the open circle indicates the conductance in
the absence of tectonic stimulation. b The change in synaptic conductance stemming from low frequency stimulation, yielding LTD. The dotted
horizontal line shows the conductance level without applying stimulation. Reprinted with permission from [5]

Fig. 6 Experimental demonstration of percentage change on
synapse weight as a function of the relative timing between pre- and
post-synaptic spikes. LTP is generated when presynaptic spike precedes
post-synaptic spike, whereas LID is induced when presynaptic spike
lags post-synaptic spike. Reprinted with permission from [61]

Fig. 7 Ideal STDP learning functions. a Asymmetric Hebbian learning
function. b Asymmetric anti-Hebbian learning function. c Symmetric
Hebbian learning rule. d Symmetric anti-Hebbian learning function.
Reprinted with permission from [62]
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weight can stabilize to intermediate values inside the
boundary definitions, whereby it is not mandatory to
enforce boundary conditions for the weight values [63–65].
It should be kept in mind that STDP has recently attained
much more interest than spike rate dependent plasticity
(SRDP) due to its simplicity and biological plausibility as
well as acceptable computational power.
In contrast to long-term plasticity, short-term plasti-

city (STP) features the modification of synapse weight
that can only last from tens of milliseconds to a few
minutes and quickly recover to its initial state [66], as
described in Fig. 9. Similar to long-term plasticity that
can be classified into LTP and LTD, short-term plasticity
also includes two types of activity patterns, which are
short-term facilitation (STF) and short-term depression
(STD). STF that transiently increases the synapse weight
is primarily caused by the arriving of two or more action
potentials at presynaptic neuron within a very short-time
interval, thus boosting the concentration of Ca2+ ions.
As a consequence, the subsequent presynaptic action
potential can excite more neurotransmitter released,
which can be further facilitated by a high-frequency train
of presynaptic firings called tetanus. This leads to an-
other form of synaptic plasticity referred to post-tetanic
potentiation (Fig. 8). Repeated presynaptic activities can
also cause continuous depletion of the synaptic vesicles
available for release into the synaptic cleft, which results
in decrease of synapse weight, i.e. STD.

Phase-Change Materials
Undoubtedly building a neuromorphic circuit that can ef-
fectively imitate the behaviours and connections between
different neurons is the most prospective approach to
overcome von Neumann limits and to ultimately achieve
neural brain emulation. However, conventional CMOS-

based neuromorphic circuits caused much more energy
consumption than the biological brain and cannot truly
mimic its biological behaviours [67–70]. It is evident that
a desired neuromorphic device must be able to emulate
the spike-dependent synapse plasticity within the similar
time interval to brain synapse while at the cost of low
energy consumption. As a result, several innovative hard-
ware architectures have been under intensive research
aiming to achieve the required synapse performances.
Within these technologies, PCM has been recently consid-
ered as a leading candidate in comparison with its rivals
due to the analogous physical behaviours of phase-change
materials to biological synapse [71, 72].
Phase-change materials adopted for neuromorphic

applications commonly refers to chalcogenide alloys
that mainly include the elements Ge, Sb, and Te. At-
tractiveness of phase-change materials arises from a
phenomenon that it can be switching reversibly be-
tween a metastable amorphous phase with high elec-
trical resistivity and low optical reflectivity and a stable
crystalline phase with low electrical resistivity and high
optical reflectivity when suffering from either electrical
or optical stimulus [73]. Such remarkable differences
on the electrical/optical properties between amorphous
and crystalline phases make phase-change materials
very promising for a variety of NVM applications such
as optical disc [33, 74], PCRAM [35, 75–77], scanning
probe phase-change memory [36, 78–80], and phase-
change photonic device [37, 81–83], as shown in Fig. 9.
To electrically achieve crystallization, an electric pulse is
applied to phase-change materials at amorphous state to
bring its temperature above glass transition temperature
but below melting temperature by means of the resulting
Joule heating, subsequently followed by a slow cooling.
This process usually refers to ‘SET’ operation for PCRAM

Fig. 8 Experimental demonstration of STP for neuromuscular synapse. Presynaptic motor nerve was stimulated by train of electrical pulses.
The end-plate potentials (EPPs) that are the depolarizations of skeletal muscle fibres caused by neurotransmitters binding to the postsynaptic
membrane in the neuromuscular junction are facilitated initially, followed by a depression. Epps return to their rest state after removing the
stimulation. Reprinted with permission from [5]
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operation. Amorphization of phase-change materials that
is called ‘RESET’ by convention is induced by electrically
heating the media above melting temperature and quickly
quenching it to room temperature. In general, SET oper-
ation generally lasts a few hundreds of nanoseconds, while
time taken by ‘RESET’ is in the range of a few of tens of
nanoseconds or even down to picosecond regime. Such a
thermal switching is schematically illustrated in Fig. 10a.
In addition to thermal switching, phase-change materials
also exhibit a unique electrical switching characteristic,
namely ‘threshold switching’ [84–86]. Because of thresh-
old switching effect depicted in Fig. 10b, the electrical re-
sistance of the phase-change materials in amorphous
state can be dramatically reduced once the bias voltage

exceeds the threshold value, thereby resulting in a high
current beneficial for the incoming crystallization. Thresh-
old switching is extremely crucial for phase-change
materials, as it allows for the phase transition at re-
latively low voltage. Otherwise, phase transition can
only take place using very high voltage that yields un-
necessary energy consumption. These superior phys-
ical properties consolidated with considerable practical
and theoretical knowledge obtained from the applica-
tions of phase-change materials for NVM field during
the last two decades successfully endow phase-change
materials with several advantageous features such as an
excellent scalability of <5 nm [87], a fast switching speed
of <1 ns [88], a long cycle endurance of >1012 [17], and a

Fig. 9 Application of phase-change materials on a phase-change optical disc, b PCRAM, c scanning probe phase-change memory, and
d phase-change photonic memory

Fig. 10 Schematic of a thermal switching and b electrical switching (i.e. threshold switching) in phase-change materials
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low energy consumption of less than a petajoule per bit
[89], thus enabling the viability of using nanoscale PCMs
to emulate the biological synapse that has similar charac-
teristics to phase-change materials.

PCM-Based Synapse Models
Before the experimental study of the PCM-based arti-
ficial synapse, a comprehensively theoretical model is
always preferable to assess the potential of PCM
devices for large-scale spike neural network (SNN)
applications. Without an effectively theoretical model,
researchers may have to spend tremendous compu-
tational and experimental resources to establish the
viable technological path towards the success of building
PCM-based neurons and synapses. To achieve this goal,
Suri et al. first proposed a behaviour model to simulate
the LTP and LTD behaviours of PCMs using the
Ge2Sb2Te5 (GST) and GeTe medium [90–92]. In Suri’s
model, the conductances of GST and GeTe medium are
considered as the synapse weight which can be there-
fore modified through either ‘SET’ process that corre-
sponds to LTP or ‘RESET’ process indicating LTD. In
this case, proper pulse magnitude and width need to be
determined carefully so as to generate the desired con-
ductances. The change on synapse weight (conductance
in this case) with respect to the applied pulse duration
is described as:

dG
dt

¼ α exp −β
G−Gmin

Gmax−Gmin

� �
ð2Þ

where G, Gmin, and Gmax denotes the device conductance,
minimum device conductance, and maximum device
conductance, respectively; α and β are fitting parameters.
According to above equation, the change on synapse

weight during a certain time interval Δt is equal to:

dG ¼ αΔt exp −β
G−Gmin

Gmax−Gmin

� �
ð3Þ

The reported equations here give rise to a satisfactory
matching with the experimentally measured data for
GST device, as shown in Fig. 11.
Although this model can accurately forecast the bio-

logical behaviours of brain synapses, it cannot be directly
applied to a hybrid neural circuit comprising CMOS
neurons and PCM-based synapse that requires a circuit-
compatible model [90]. In order to resolve this issue, a
more comprehensive circuit-compatible model consist-
ing of electrical, thermal, and phase-change sections has
been developed to mimic the progressive character of
the LTP experiments [90]. Electrical sections is governed
by the well-known Ohm’s law, and the adopted device
resistance Rdev is the sum of the electrode resistance Rs
and the resistance of the GST layer that depends on the
volume fraction ratio of amorphous to crystalline phase
as well as the resistance drift effect [93], given by

Rdev ¼ Rs þ Rc
1−Cað Þ þ R0a

t
t0

� �Cadr

ð4Þ

where Rc and R0a is the resistance of fully crystalline and
amorphous phase respectively and Ca is the amorphous
volume fraction; t0 is the time when the initial phase-
change process begins, and dr is an exponent that indicates
the power-law slope. The thermal section calculates the
temperature Tb inside the GST media using

Tb ¼ T 0 þ PtRtgst ð5Þ

where T0 is the ambient temperature, Pt is the electrical
power resulting from Joule heating, and Rtgst is the
thermal resistance of the device, described by

Fig. 11 Theoretical fitting of the experimental a LTP and b LTD characteristics of the GST device using the developed behaviour model for
different pulse numbers and width. Reprinted with permission from [90]
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Pt ¼ u2

Rs þ R0c
ð6Þ

Rtgst ¼ 1−Cað ÞRtc0 þ CaRta0 ð7Þ

where u is the applied electric pulse and Rtc0 and Rta0

are the thermal resistance of the full crystallized and
amorphized phases.
The phase-change section is mainly employed to calcu-

late amorphous volume fraction Ca that strongly relates to
the electrical and thermal sections using crystallization
rate equation:

dCa

dt
¼ −

Ca
2

τc
1− exp Ea

Tb−Tm

Tb

� �� �
exp −

Eb

Tb

� �
when Tb > Tm

ð8Þ
dCa

dt
¼ −

1
τa

Tb−Tm

Tm
when Tm > Tb > T g ð9Þ

where Tm and Tg are melting and glass transition
temperature for GST; Ea and Eb are the fitting parame-
ters for crystallization rate at high and low temperature,
respectively; τa and τc are the fitting amorphization and
crystallization rates, respectively.
By solving the aforementioned electrical, thermal, and

phase-change sub-models simultaneously, this circuit-
compatible model exhibits a less closer fitting to the
observed LTP behaviour of the GST device in compari-
son with the previous behaviour model, as shown in
Fig. 12. However, due to its capability of capturing the
correct behaviour of PCMs for a relatively wide range
of measurements with a small number of semi-physical
parameters, it is therefore suitable for the easier circuit
design that takes advantage of PCMs to emulate millions
of synapses.
Another behaviour model to study the computational

properties of networks of synapses based on phase-

change materials was developed by Jackson et al. [94]. In
this model, the state transition is determined by a calcu-
lated probability depending on the initial conductance
and pre-post spike timing. In this case, the device
conduction is extracted from a log-Gaussian distribution
once the probability indicates the occurrence of the state
transition. The pre-before-post pairings are tackled com-
pletely separately from post-before-pre pairings, each re-
quiring a distinct set of model parameters. The probability
of this phase-change-based synapse is given for each type
of pairing between the amorphous and crystalline states as
a function of the pre-post spike timing Δt, tailored by the
initial device resistance Ri following:

P transitionð Þ ¼ 1þ exp
Δt þ α log10Ri þ β

κ

� �� �−1

ð10Þ
where α, β, and γ are timescale-dependent, threshold-
dependent, and initial resistance-dependent parameters,
respectively. Hence, the probability for a resistance
Rf = 10x is calculated by:

P xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp −
x−μ exp γΔtð Þð Þ2

2σ2

 !
ð11Þ

where μ, σ, and γ are parameters regulating the mean,
standard deviation, and dependence on spike timing of
the log normal distribution, respectively. It should be
noticed that these parameter values rely on the physical
characteristics of the device and the pulse scheme har-
nessed to induce phase transformations, showing a good
agreement with the experimentally measured distribu-
tion of conductances and the STDP-like dynamics.
Differing from aforementioned models, the response

of PCM-based synapse to the time delay between pre-post
spikes has recently been re-examined by an ab initio
molecular-dynamics (AIMD) model that consists of 180
atom models created in cubic supercells with periodic
boundary conditions at a fixed density of 6110 kg/m3[95].
PAW pseudopotentials are deployed in this case to handle
the outer s and p electrons as valence electrons [96], asso-
ciated with the Perdew-Burke-Enzerhof (PBE) exchange-
correlation functional and a plane-wave kinetic-energy
cutoff of 175 eV [97]. During the simulation, phase-
change materials, referring to GST, are initially considered
to have amorphous phase obtained from a conventional
melt-quench approach at a cooling rate of −15 K/ps.
Crystallization in this model is achieve by heating it at
500 K for 500 ps, thus leading to the adequate number of
the defined fourfold rings that represent the structural
order of the GST media [98, 99]. According to this model,
fourfold rings are interpreted as four atoms forming a
closed path with a maximum bonding distance and with

Fig. 12 Theoretical fitting of the experimental LTP characteristics of the
GST device using the developed circuit-compatible model for different
pulse numbers and width. Reprinted with permission from [90]
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all four three-atom bond angles, plus the angle between
the planes defined by two triplets of atoms, being a
maximum of 20° from the ideal angles of 90° and
180°, respectively.
In order to simulate the STDP behaviour of the de-

signed artificial synapse, a train of temperate pulses with
different width and magnitudes are introduced into this
model to represent the corresponding pre- and post-
spikes. For LTD simulation, the pre-spikes comprise
three stepcase 5-ps temperature pulses of 600, 610, and
635 K, separated by a time interval of 40 ps at 300 K
between each single pulse. The pre-spikes are set to have
sufficient magnitude but with too short duration to in-
duce the crystallization. The post-spike consists of a sole
temperature pulse of 300 K. As a result, by modulating
relative time window between pre-post spikes, the single
post-spike can overlap with the pre-spike with different
temperature magnitude. As the superposed temperature
exceeds the melting point, the resulting pre-post spikes

would attenuate the degree of crystallinity of GST and
thus decrease the conductivity, reflected in this model
by a reduction in the number of fourfold rings. On the
other hand, the pre-spikes for LTP simulation consist of
a sequence of 50 ps temperature pulses of 375, 335, and
310 K with a time interval of 40 ps, while the post-spike
remains the same as the LTD case. The choice for the
LTP pre-spikes follows a rule that these temperature
pulses have sufficiently long width but with too low
amplitude to cause crystallization. Therefore, the re-
sulting temperature possessed from the overlapping of
pre-post spikes outnumbers the crystalline point and
consequently boost a growth in structure order, increas-
ing the conductivity. The described pulse scheme as well
as the resulting influence on the structure order of GST
is schematically shown in Fig. 13. Additionally, in order
to deeply analyze and interpret the results shown in
Fig. 13, the effects of various single pulse width and
temperature on the characteristics of the designed PCM-

Fig. 13 a The adopted pulse scheme used for the LTD simulation (left) and the LTP simulation (right). b Overlapping of pre-post spikes to simulate
STDP behaviour of LTD. c Overlapping of pre-post spikes to simulate STDP behaviour of LTP. d Change in the number of fourfold rings
at the end of the sequence for LTD simulation. e Change in the number of fourfold rings at the end of the sequence for LTP simulation.
Reprinted with permission from [95]
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based synapse are also evaluated, giving rise to Fig. 14. It
is clearly indicated in Fig. 14c that a small stable crys-
talline cluster is formed by a low-temperature annealing
of the melt-quenched amorphous model prior to the
neuromorphic simulations, followed by a subsequent
growth proportional to the magnitude and duration of
the applied heat pulses, as illustrated in Fig. 13.

PCM-Based Synapse Devices
The resulting theoretical feasibility secured from various
in silico models has dramatically strengthened the confi-
dence of worldwide researchers in physically realizing
the desired PCM-based synapse. Thanks to this, the
pioneering electronic synapse using phase-change mate-
rials was achieved by Kuzum et al. in 2011 to emulate
biological STDP behaviour according to a very delicate
control of the intermediate resistance level in the phase-
change material (GST in this case) that is regarded as
the synapse weight [100–102]. In their neuromorphic
circuit, the pre-post spikes generated from an arbitrary
waveform generator are connected to the top and bot-
tom electrodes of an electronic synapse. Pre-spikes that
consist of a train of stepwise pulses have successive
larger magnitude for depression simulation correspond-
ing to reset state, while exhibiting gradually decreasing

magnitude for potentiation case indicated by set state.
The pulse width and rise and fall times of a single de-
pression pulse is chosen to be 50, 10, and 10 ns, whereas
they are 1 μs, 100 ns, and 100 ns for a single potenti-
ation pulse. The time interval between each depression
or potentiaton pulse is 10 ms, and the entire duration of
pre-spikes last 120 ms to match the biological synapse.
In contrast to pre-spikes, post-spikes that operate as
gating function for the pre-spike is a single pulse with a
negative low magnitude and duration of 120 ms while
having 8 ms at the centre. In this case, the net electric
potential applied across the electronic synapse is equal
to the difference between the magnitude of pre-spike
and that of post-spike. If pre-post spikes are synchron-
ous, the post-spike superposes with neither depression
nor potentiation pulses of the pre-spikes. However, for
the case of pre-spikes that precede post-spikes, the net
potential drop across the designed synapse would exceed
the so-called potentiation threshold, i.e. the minimum
voltage to induce crystallization, which can increase the
device conductance, suggesting an increase on synaptic
weight. On the other hand, when the pre-spike lags
behind the post-spike, the post-spike is overlapped with
pre-spikes having larger magnitude so that the overall
voltage drop would be above the depression threshold

Fig. 14 a Effect of a sequence of 50 ps heating pulses with gradually increased magnitudes (top) on the number of fourfold rings (bottom).
b Effect of the temperature pulse duration with a constant magnitude of 700 K (top) on the number of fourfold rings (bottom). c The snapshots
of the model are taken from the middle of the rest periods marked A, B, and C in (a) and A, D, E, and F in (b), and show the progressive growth
of an initially small crystalline cluster. Atoms forming parts of fourfold rings are coloured purple, and the colour coding of the other atoms is as
follows: Ge, blue; Sb, red; Te, green. Reprinted with permission from [95]
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representing the minimum voltage for amorphization.
This would effectively reduce the conductance, thus
corresponding to a decrease on the synapse weight. More
importantly, modulation of the relative time delay between
pre-post spikes allows post-spike to overlap with pre-spike
with different magnitudes and leads to various extents of
either amorphous or crystalline states, closely mimicking
the biological STDP mechanism. The presented pulsing
scenario as well as the simulated STDP function is
schematically shown in Fig. 15.
There is no doubt that the above approach can astonish-

ingly imitate both LTD and LTP properties of biological
synapse based on the adjustment of the intermediate re-
sistance level. However, for implementation of large-scale
neural systems, this complex resistance-control method
would cause several severe issues such as capacitive line
charging and high power dissipation [90]. In addition, as
the emulation of the LTD process is strongly linked to
amorphization, higher energy consumption is therefore
required than the LTP process involving crystallization
with less energy consumption. To address these is-
sues, a novel paradigm to harness two PCM devices
to simulate a single synapse, namely 2-PCM synapse,
has been proposed by Suri et al. [90, 91], as illus-
trated in Fig. 16.

According to Fig. 16, an electronic synapse consists of
one PCM device responsible for the LTP and another
PCM device in charge of the LTD. The initial phases of
both devices are considered to be amorphous. In con-
trast to the previous design, both LTP and LTD charac-
teristics in this 2-PCM synapse are realized through the
crystallization of phase-change materials. The LTP PCM
device gives a positive current distribution, whereas
current flowing through the LTD PCM device is negative
by means of an inverter. Therefore, the potentiation of
the LTD device in turn leads to a synaptic depression
due to the subtracted current through it in the post-
neuron. The pre-post spikes are configured in such a
way that the overall impact of the two pulses only po-
tentiate or partially crystallize the LTP device without
affecting the LTD device in the case of pre-spike fired
before post-spike, while the superposition of the two
pulses only potentiates the LTD device rather than the
LTP device when the post-spike precedes the pre-spike.
Following above rule, the pre-neuron would send out a
read pulse and enters ‘LTP’ mode for time tLTP during
which the LTP synapse undergoes a partial SET pulse if
the postsynaptic neuron spikes; otherwise, the LTD
synapse is programmed. One prominent advantage of this
2-PCM synapse obviously arises from its operations in

Fig. 15 The adopted pulse scenario and the simulated STDP compared with the measured biological counterpart. a Measured STDP characteristic of
the PCM-based synapse against the biological STDP measured from the hippocampal glutamatergic synapses. b The pulsing scenario to cause STDP
for potentiation and depression processes. Reprinted with permission from [100]
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crystalline regime for both LTP and LTD events that con-
sumes less energy than amorphization case. Additionally,
as the information stored in the designed device is chiefly
in crystalline state, it is therefore less susceptible to the
resistance drift effect that often occurs in phase-change
materials in amorphous states.
Li et al. proposed another PCM-based synapse whose

biological events are mainly controlled by crystallization
rather than amorphization. In their experiment, the bio-
logical synapse is emulated by a crystalline GST (c-GST)-
based memristor whose resistance varies between 500 Ω
and 10 kΩ when subject to a DC voltage sweep [103, 104],
as illustrated in Fig. 17. Accordingly, the synaptic weight is
denoted by the conductance of the c-GST memristor that
can be modulated by the applied electric pulses. It was
found that the device conductance can be increased via
the negative pulses that thus represent the potentiating
spikes, while the positive spikes leading to the reduction
on the device conductions corresponds to the depressing

spikes. To trigger the synaptic behaviour in crystalline re-
gime, the device was first crystallized with a resistance of
2.6 kΩ by a SET pulse. Similar to aforementioned pulse
schemes, the potentiating spikes consist of a sequence of
the pulse trains with successive increasing amplitude from
−0.6 to −0.8 V with a 10-mV step, whereas the amplitude
of the successive depressing spikes ranges from 1 to 1.8 V
with a 40-mV step. The rest, rise, and trailing periods of a
single spike is fixed to 30, 10, 10 ns, respectively. As a re-
sult, varying the relative time delay between pre-post
spikes clearly results in various net voltage drops across
the electronic synapse after the superposition of the pre-
and post-spikes, thereby accurately resembling the typical
or even more complex STDP forms, as shown in Fig. 18.
Such an analogue phase-change synapse exhibits several
advantages such as ultra-low operation voltage, ultra-fast
synaptic events, and feasibility of time window tuning
when compared to other emerging electronic synapses.
The practicality of using different pulsing schemes

from above devices to generate STDP has recently been
investigated by Jackson et al. who built an electronic
synapse that includes a FET acting as an access device,
connected in series with a PCM device [94]. A 200-ms
electric pulse with front portion having higher amplitude
and back portion having lower amplitude is injected to
the gate of the synaptic FET with zero time delay after
the presynaptic spike. Another 60-ns electric pulse with
a time delay of 100 ms after postsynaptic spike is directly
applied to the PCM device. The amplitudes of the pre-
post spikes are established in such a way that the FET
only programmes during the brief overlap between
these two signals. According to this strategy, when the
presynaptic neuron is spiked before post-neuron, the
shorter pulse only coincides with the portion of the
longer pulse with lower amplitude, whereby the result-
ing power only enables the crystallization and thus
increases the device conductance. On the contrary, for
the case of post-spike preceding the pre-spike, the over-
lapping of the shorter pulse with the portion of the
longer pulse with larger amplitude would yield suffi-
ciently high power to drive the temperature inside the
phase-change materials towards the melting point, thus
inducing amorphization and decreasing the conductance.
Therefore, the consequent device conductance entirely de-
pends on the coincidence of the short and long electrical
signals whose characteristics can be modulated by the
relative pulse time window. Such a modulation method in
associated with the simulated STDP is given in Fig. 19.
Differing from the first route, Jackson et al. also de-

vised another electronic device to produce STDP where
time delay is internally determined by a simple RC
circuit [94], as revealed in Fig. 20. The memory of
neuron’s latest firing event in this method is interpreted
by the spike-timing-dependent change in synaptic

Fig. 16 Circuit schematic for the 2-PCM synapse. The input of the
current from the LTD devices is inverted in the post-synaptic neuron.
Reprinted with permission from [90]

Fig. 17 I–V characteristics measured by DC double sweeping,
exhibiting a memristive hysteresis loop. Reprinted with permission
from [103]
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conductance determined by an asynchronous handshak-
ing mechanism. The key insight of this mechanism is
that the spiking neuron would initialize its capacitor as
well as fire a short ‘alert’ pulse to its synaptic partners.
The function of the alert pulse is to remind the synaptic
partners to examine the instantaneous voltages across
their respective capacitors and to stimulate a response
pulse after a constant delay that is therefore synchron-
ous with a gating pulse from the spiking neuron. There-
fore, the device can only be programmed during the

overlapping of the gating and response pulses, which
implies that only the synapses in conjunction with the
spiking neuron can be programmed for large crossbar
array. The width of the gating pulse offsets any un-
wanted temporal jitter between the arrival of the alert
and response pulses; the amplitude change of the synap-
tic weight relies on the amplitude of the response pulse
whose shape is determined by whether the response
pulse is sent to an axon or a dendrite. Note that axon
usually generates a square response pulse with very short

Fig. 18 Four types of the STDP characteristics obtained from the c-GST-based electronic synapse. a Antisymmetric Hebbian learning rule.
b Antisymmetric anti-Hebbian learning rule. c Symmetric Hebbian learning rule. d Symmetric anti-Hebbian learning rule. Reprinted with
permission from [103]

Fig. 19 a The pulse algorithm adopted in [94] to emulate the STDP. b The generated STDP events using the designed circuit. Reprinted with
permission from [94]
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falling time, thus giving rise to a very high quenching
rate and decreasing the device conductance due to the
amorphization. By contrast, response pulses obtained from
dendrites are triangular shaped, which would increase the
device conductance because of the crystallization effect.
Based on this algorithm, the exponential time dependence
of RC circuits permits the neurons that have not fired
recently to only send low magnitude response signals.
The merit of this newly proposed method arises from
the fact that the neuronal spiking duration in this case
is a sum of nanosecond-scale alert, nanosecond to
microsecond delay, and nanosecond to microsecond
gating pulses, resulting in a total duration on the order
of a few microsecond that exceeds the biological synap-
tic rate at the same delay level of 100 ms.

PCM-Based Neural Networks
Considering the large amount of biological synapses in
human brain, it would be imperative to design a much
more complex circuit than a single PCM-based synapse
in order to emulate the STDP events at the network

level. To achieve this goal, the idea to make use of PCM
cells in a crossbar fashion to mimic the brain neural net-
works has been experimentally demonstrated by Eryil-
maz et al. As can be seen from Fig. 21, a 10-by-10
memory array consisting of 100 PCM cells configured in
a crossbar fashion are deployed in their experiment to
imitate the large networks [105]. Each cell comprises a
PCM device using a conventional mushroom type PCRAM
and a selection transistor. Each cell can be accessed either
through a bitline (BL) that is connected to the gates of
selection transistors of 10 memory cells, or a wordline
connected to the top electrode of the PCM element
of 10 memory cells. According to this design, biasing
the corresponding BL and WL nodes allows each
cell to be exclusively accessed. To simulate the syn-
aptic events, a pulse scheme that harnesses a RESET
pulse of 1.1 V, followed by nine SET pulses of
0.85 V, was implemented to induce the gradual re-
sistance change between high resistance and low re-
sistance states, thus leading to nine distinguishable
resistance levels.

Fig. 20 a The RC delay algorithm adopted in [94] to emulate the STDP. b The generated anti-STDP events using the designed circuit. Reprinted
with permission from [94]

Fig. 21 Schematics of a 10 × 10 PCM cell array (left), a single PCM cell (middle), and a mushroom type PCRAM (right). Note that the PCRAM cell
adopted in [105] consists of a bottom electrode (BE), a heater, a phase-change layer, and a top electrode (TE). Reprinted with permission
from [105]
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A more attractive feature of the designed phase-change
synapse array stems from its ability to perform the asso-
ciative learning function. Before the experiment, all the
synapses are initially set to amorphous state, and the
learning experiment consists of epochs during which
synaptic weights are updated depending on firing neurons.
The pattern is monitored after the training but with an
incorrect pixel, and the incorrect pixel is expected to be
recalled in the recall phase after training is performed.
Therefore, a complete pattern appears during the training
phase of an epoch, while an incomplete pattern with an
incorrectly OFF pixel is presented during the recall phase.
All patterns consist of 10 pixels, and each neuron is
associated with a pixel. By means of this paradigm, test
pattern was found to be stored and recalled associatively
via Hebbian plasticity in a manner similar to the biological
brain, as verified in Fig. 22.
Most recently, Ambrogio et al. has proposed another

physics-based model to simulate the large-scaled synaptic
networks that consist of numerous phase-change synapses
with one transitor/one resistor (i.e. 1T1R) architecture
[106, 107], as illustrated in Fig. 23. It is clearly indicated in
Fig. 23 that the pre-spike defined as a train of rectangular

pulses is directly applied to the gate of the transistor, and
the positive gate voltage consolidated with a constant bias
maintained by the postsynaptic neuron (POST) at VTE

triggers a current spike in the synapse that flows towards
POST. As VTE is usually set to be negatively constant, the
resulting current spike is also negative and thus yields a
staircase-like increase of the internal potential Vint in the
inverting integrator. Once Vint exceeds the threshold volt-
age of the comparator Vth, the POST excites a forward
spike to the neuron in the next layer and a backward spike
to VTE to induce STDP through the change on the synap-
tic weight (PCM conductance here). VTE spike in this case
is made up of two rectangular pulses; the second of which
is required to have higher amplitude than the first one.
Therefore, the adopted shape of the VTE spike can effect-
ively modulate the conductance of PCM device as a func-
tion of the relative time delay between pre-post spikes,
clearly fitting the STDP behaviours. Furthermore, in order
to prove its learning capability, simulations of pattern
learning on a two-layer networks consisting of 28 × 28
pre- and one post-neuron with the proposed 1T1R syn-
apse was performed, resulting in Fig. 24. The developed
model allows for MNIST digit recognition probability of

Fig. 22 Evolution of normalized resistance of synaptic devices is shown, for the 60% initial variation case. All normalized resistances are one
initially since the normalized resistance map shows the current resistance of a synaptic device divided by its initial resistance. Note that the row
and column numbers corresponds to BL and WL that connect the synaptic devices. For instance, the data shown in row #3 and column #6 is the
normalized resistance of the memory cell that can be accessed by BL #6 and WL #3. First, pattern 1 is presented to the network. For pattern 1,
ON neurons for the complete pattern during update phase are N1, N2, N3, N4, and N6, and for the recall phase, N6 is OFF and expected to be
recalled (i.e. expected to fire) after training with a certain number of epochs. The gradual decrease in the normalized resistance of synaptic
connections between firing neurons during the update phase can be observed. After 11 epochs, when recall phase is performed, OFF pixel #6
(neuron #6) is recalled (meaning neuron #6 fires in recall phase), and then pattern 2 is presented for training. For pattern 2, the complete pattern
is represented by N5, N7, N8, N9, and N10, and N5 is missing in the recall phase. Reprinted with permission from [105]
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33% and a corresponding error of 6%, which can be
further improved to 95.5 and 0.35% respectively by using
three-layer structure with 256 neurons [106].

PCM-Based Neurons
No doubt that all results presented so far are dedicated to
the emulation of biological synapse using PCM device.
However, in order to ultimately achieve the brain-like
neural networks, the capability of using PCM-based device
to imitate biological neuron with the involvement of
maintenance of the equilibrium potential, the transient dy-
namics, and the neurotransmission process is highly pre-
ferred. The prerequisite for PCM-based neuron realization
is to effectively simplify the complex biological neuron
mechanism that can be therefore readily applied to hard-
ware [108]. Unlike the PCM-based synapse with continu-
ously adjustable device conductance, the PCM-based
neuron must be able to ‘fire’ after receiving a certain

number of pulses that can influence an internal state that
does not necessarily relate to the external conductance
unless the neuron fires when exceeding the threshold.
Additionally, non-volatility usually required for electronic
synapse is not mandatory for neuron emulation that can
utilize volatility to implement leaky integrate-and-fire
dynamics.
When simulating the biological neuron, particular

attentions need to be paid to stochastic neuronal dy-
namics that was reported to account for signal encoding
and transmission besides the deterministic neuronal dy-
namics [3]. The cause of this stochastic behaviour can be
owed to several complex phenomena such as inter-neuron
morphologic variabilities, chaotic motion of charge car-
riers due to thermal noise, ionic conductance noise, and
other background noise [109]. As a result, it would be
necessary for artificial neuron to reflect this stochastic
firing behaviour so as to closely mimic the biological

Fig. 23 Schematic of the 1T1R synapse. Reprinted with permission from [106]

Fig. 24 Schematic illustration of a two-layer neuron structure consisting of b a 1T1R synapse array. Reprinted with permission from [106]
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brain. In spite of these stringent requirements, Tuma et al.
have recently devised a PCM-based neuron shown in
Fig. 25 to integrate postsynaptic inputs [110], whereby the
evolution of neuronal membrane potential as encoded by
phase configuration within the device was demonstrated.
More importantly, the ability to present remarkable inter-
neuronal and intra-neuronal randomness using the devised
neuron was also verified. Intra-device stochasticity that is
usually ascribed to shot-to-shot variability in both internal
atomic configuration of the melt-quenched amorphous
region and thickness results in multiple integrate-and-
fire cycles in a single phase-change neuron to generate
a distribution of the interspike intervals, leading to
population-based computation. Notwithstanding the
slow firing rate of the individual neurons, overall neuron
population was proved to accurately indicate fast sig-
nals. Based on the designed PCM-based neuron, the de-
tection of temporal correlations within a large number
of event-based data streams was demonstrated, and a
complete PCM neuromorphic circuit made up of PCM-
based neurons and PCM-based synapses has also been
delivered [111].

Conclusions
The ability to gradually induce a reversible switch be-
tween SET and RESET states, integrated with several
superior transition properties such as fast switching
speed, low energy consumption, and long retention, has

made phase-change-based devices a leading candidate to
emulate the biological synaptic events. Moreover, the
excellent scalability of phase-change materials down
to 2-nm size [112] also forecasts its potential to re-
produce the ultra-high density neurons and synapses
inside human brain. In this case, majority of the current
work on electronic synapse are devoted to simulate the
STDP event of the biological synapse that was reported to
govern the learning and memory function by gradually
changing the conductance of the phase-change materials,
thereby resulting in several novel pulse schemes to adjust
the device conductance with respect to the relative time
delay between two external stimulus applied to device that
represent pre-post spikes. Most importantly, the construc-
tion of PCM elements in array level allows for the emula-
tion of large-scale connectivity of human brain with any
given neuron having as many as 10,000 inputs from other
neurons, which is exemplified by an integrated hardware
with 256 × 256 neurons and 64,000 synapses [113].
In spite of the aforementioned merits, the neurons and

synapses based on PCM devices are also facing some
serious issues. Although the conductance of PCM device
in crystalline phase can be modulated continuously, the
device conductance in amorphous phase is found to
suffer from a sudden change. This can be alleviated
using multiple conductances per synapse and periodic
corrections [3], but still remaining questionable. Besides,
the inherent weakness of amorphous phase-change

Fig. 25 Schematic of PCM-based neuron with an array of plastic synapse at its input. Reprinted with permission from [110]
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materials including resistance drift or relaxation of the
amorphous phase after the melt-quenching also exacer-
bates the application of PCM on neuromorphic circuit
systems. Another issue of PCM-based neuromorphic
device arises from its fairly poor performance metrics
mainly due to immaturities or inefficiencies in currently
developed STDP learning algorithm. Under this cir-
cumstance, such inherent imperfections of the PCM
devices may pose some indiscernible problems. To
boost the classification accuracy, a so-called back
propagation method that has received extensive appli-
cation in computer science field to train artificial
neural networks has recently been introduced a
three-layer perceptron network with 164,885 synapses
based on 2-PCM structure that was trained on a
subset of a database of handwritten digits, leading to
training and test accuracies of 82–83% [114], as
shown in Fig. 26. This work simply implies that classifica-
tion accuracy can be achieved on the condition that either
phase-change materials or the training algorithm permits
PCM devices to serve more like a bidirectional NVM
with a symmetric, linear conductance response of high
dynamic range [115].
Despite the aforementioned challenges, the excel-

lent physical properties of phase-change materials in
conjunction with the currently mature technologies
on PCM devices has provided an opportunity to en-
vision the success of the future artificial neural net-
works that can perform the similar complex tasks
to human brain while without sacrificing the occupied
area and energy consumption. Device models suitable
for neuromorphic architectures are still needed for
application-specific performance evaluations of these
systems.
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