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Predicting the propensity for thermally activated β events in
metallic glasses via interpretable machine learning
Qi Wang 1✉, Jun Ding 2✉, Longfei Zhang 3, Evgeny Podryabinkin4, Alexander Shapeev 4 and Evan Ma1

The elementary excitations in metallic glasses (MGs), i.e., β processes that involve hopping between nearby sub-basins, underlie
many unusual properties of the amorphous alloys. A high-efficacy prediction of the propensity for those activated processes from
solely the atomic positions, however, has remained a daunting challenge. Recently, employing well-designed site environment
descriptors and machine learning (ML), notable progress has been made in predicting the propensity for stress-activated β
processes (i.e., shear transformations) from the static structure. However, the complex tensorial stress field and direction-dependent
activation could induce non-trivial noises in the data, limiting the accuracy of the structure-property mapping learned. Here, we
focus on the thermally activated elementary excitations and generate high-quality data in several Cu-Zr MGs, allowing quantitative
mapping of the potential energy landscape. After fingerprinting the atomic environment with short- and medium-range interstice
distribution, ML can identify the atoms with strong resistance or high compliance to thermal activation, at a high accuracy over ML
models for stress-driven activation events. Interestingly, a quantitative “between-task” transferring test reveals that our learnt model
can also generalize to predict the propensity of shear transformation. Our dataset is potentially useful for benchmarking future ML
models on structure-property relationships in MGs.
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INTRODUCTION
Metallic glasses (MGs), as a unique class of amorphous materials,
exhibit a high atomic packing density with pronounced topolo-
gical and chemical short-to-medium range order1–4. The complex
local structures have been demonstrated to have a profound
influence on the properties of MGs5. In essence, many properties
of MGs can be depicted in terms of excursions in the potential
energy landscape (PEL)6–8, which is a multidimensional config-
urational space with local energy minima separated by barriers. In
the PEL picture, elementary excitations upon external stimuli (e.g.,
thermal or mechanical) are associated with the β processes, which
correspond to the hopping between nearby local minima, i.e., sub-
basins inside a deep PEL megabasin9. Elementary excitations have
been correlated with many properties10–12, including local plastic
deformation13,14, diffusion mediated by atomic hopping15, as well
as structural relaxation (local energy minimization in the direction
towards the bottom of the basin) or rejuvenation (to a higher-
energy local minimum)16.
It remains as a long-standing challenge to unravel the role of

static structure in controlling the elementary excitations in MGs: is
there a structural indicator that can be tapped into to predict how
resistant or compliant different local regions are to externally
stimulated activation? Over the past several decades, many efforts
have been devoted to addressing this critical question. Recently,
the emerging machine learning (ML) technique, based on well-
crafted representations of the atomic environment, has been
proven to be promising for establishing atomic-level structure-
property relationships in liquids and glasses17–24. For example,
Schoenholz et al.17 studied L-J model liquids and utilized ML to
derive a structural parameter called “softness”, which was found to
correlate well with the particle’s propensity for hopping, reflecting

its susceptibility to β relaxation of liquids10. Below the glass
transition temperature, metallic liquids become frozen into glass
solids and the timescale of the glass dynamics becomes very long,
well beyond the capability of atomistic (e.g., molecular dynamics)
simulations. We, therefore, have to resort to local perturbation
methods, to activate the local group of atoms into excited states
by stress or thermal stimulus, as a probe into the susceptibility to
elementary excitations. Several recent ML studies have focused on
quantitatively gauging how the local environment influences the
propensity for stress-activated β processes (i.e., shear transforma-
tions) in MGs18–20. For example, pioneering works of Cubuk et al.18

performed ML on disordered materials such as L-J glasses and
granular systems and showed that radial and bond-angle
distribution information can be used to identify atoms with a
high propensity to shear transformation. Wang et al.19 developed
interstice distribution as a new local structural representation for
MGs, which is proven to be robust in predicting plastic sites of
several MGs and has advantages in generalizing between
compositions even chemical systems. However, the accuracy
achieved in these attempts is not yet sufficiently high, and the
reported scoring metric, e.g., recall or area under the receiver
operating characteristic curve (AUC-ROC), is typically below 80%.
One reason for this is that the elementary excitations upon shear
transformations are complicated by the non-uniform tensorial
stress field in the solid under deformation, as well as the
dependence of activation on loading conditions (e.g., loading
mode and direction)25,26. If not properly dealt with, these would
introduce non-trivial noises in the accrued data and influence
adversely the quality of the learnt structure-property relations.
This problem, however, subsides when dealing with the

thermally induced elementary excitations in MGs. For instance,
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here we use activation-relaxation technique (ART)27,28 to probe
the propensity for thermal activation of each atom in MGs (see
schematic description in Fig. 1a, which will be discussed later).
These activated processes are not subject to internal non-uniform
stresses, and can be well converged by averaging over a
considerable number of activation pathways, significantly redu-
cing data noises. Meanwhile, the Gaussian-like distribution of
thermal activation energetics (Fig. 1b, to be discussed later) can
well identify atoms at both the hard and soft ends, corresponding
to locally favored and unfavored motifs, respectively. This avoids
the problem associated with common stress activation indicators
(e.g., non-affine displacement or von Mises strain), which often
exhibit a skewed “long-tail” distribution29 and the resolution at the

hard end is much lower than that on the soft side. Moreover,
thermally activated events are comparable in their energetics, at
least for some MGs that are based on some common (or similar)
elements, even when they are of different composition or
processing history; as such multiple “datasets” can be combined
to facilitate the ML identification of the structural underpinning in
more general terms.
In this work, we develop ML models to predict the propensity of

thermally activated elementary excitation, from the atomic
environment of the static MG structure. We systematically probe
the activation energies in six MGs, including Cu64Zr36 prepared
under different quenching rates, as well as Cu50Zr50 and Cu80Zr20,
using ART27,28. The activation energy around each atom is
calculated, and ensemble-averaged over 50 activation trials, to
indicate its susceptibility to excitation. We then combine the data
from the six MGs into a wider activation energy spectrum (Fig. 1b)
and use ML to identify those atoms with strong resistance or high
compliance to activation. By fingerprinting the atomic site
environment with a recently proposed interstice distribution
representation19, we find that ML can reliably identify atoms with
the highest 5% and lowest 5% activation energy, reaching an area
under the receiver operating characteristic curve (AUC-ROC) of
0.942 and 0.888, respectively. Such accuracies are considerably
better than that in previous ML predictions of the propensity for
stress-driven shear transformations18,19. We rigorously compare
our ML results with those obtained using several other feature
representations, and identify descriptors that are critical to our ML
decision; interestingly, most of them turn out to be medium-range
order features. Finally, we conduct quantitative “between-task”
transferring tests and show that our learnt model can be used to
predict the propensity for shear transformation as well. This ML
work highlights the predictive power of local static structure to
quantitatively connect with β processes in MGs.

RESULTS
Energy barriers for thermally activated β processes
We employ molecular dynamics (MD) simulation to prepare six Cu-
Zr model MG samples: (i) different compositions yet with the same
cooling rate (Cu50Zr50, Cu64Zr36, and Cu80Zr20 quenched from
liquid at 1010 K s−1), and (ii) same composition but with different
cooling rates (Cu64Zr36 MGs with the quenching rates of 109 to
1012 K s−1) (see Methods for simulation details). We then apply
ART to probe the energy barrier for thermally activated events27,28.
The physics picture of ART is to cross the energy barrier in a way
that simulates the thermal activation, although it’s actually
achieved by the ART algorithm instead of real temperature (0 K
is applied during that process).
Around each atom in those MGs, we initiate 50 independent

activation events along random activation pathways (illustrated by
the dashed red lines in Fig. 1a, see Methods for more details). The
ensemble-averaged activation energy, Eact, can then be defined as
the average energy difference between the saddle point and the
initial state,

Eact ¼ Esaddle � Einitialh i (1)

The average value of 50 independent activations around each
atom is sufficient to achieve a converged Eact, which contains key
statistical information for thermal excitations on each local region
(including the center atom and its neighbors). We chose to
average all the activation barrier into an “effective” barrier as the
target variable for this ML study. Such “effective” barrier can be
considered as a pure thermodynamics description that aims to
provide a relatively complete information on the local topology of
the potential energy landscape. Other options for the target
variable such as the lowest energy barrier have been discussed in
Supplementary Table 1.

Fig. 1 Thermally activated events in Cu-Zr metallic glasses.
a Schematic description of the β-process in the context of potential
energy landscape (PEL). Red dashes illustrate several activated
pathways from a local minimum. In practice, we initiate 50
independent events around each atom along random activation
pathways using ART and extract an ensemble-averaged activation
energy Eact for each atom. b Distribution of Eact in the six model
glasses as well as their combined Eact spectrum. The median
(quantile 50%) and quantiles 5% and 95% are marked as vertical
dashed lines in the combined Eact spectrum, and the median
(quantile 50%) is marked in the spectrum of each model glass.
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Figure 1b shows the distribution of Eact in the six MGs. The
dashed vertical line denotes the percentile 50% (median) of Eact in
each MG. The widespread of Eact signifies a large degree of
structural and property heterogeneity in each glass. As mentioned
in the Introduction, the Gaussian-like distribution of Eact observed
is very different from that for stress-activated event, where a
“long-tail” distribution is often observed in the stress activation
indicator (e.g., non-affine displacement or von Mises strain)29. The
Eact spectrum clearly depends on the MG composition or
quenching rate. Next, we merge the Eact data of the six MGs into
a more comprehensive Eact spectrum (Fig. 1b). The combined
spectrum markedly increases the variety of local environments
surveyed, far beyond what is present in a single MG. Later, we will
feed this combined dataset to ML and test if ML is capable of
mapping out the characteristic atoms at both the high Eact (hard)
and low Eact (soft) ends of these Cu-Zr MGs.

Connecting activation barriers with local atomic environment
We make use of a set of interstice distribution descriptors to
represent the local atomic environment19. The basic fingerprinting
procedure is to extract groups of bonds, facets and tetrahedra
from the coordination polyhedron of an atom, and then featurize
the distribution of interstitial spaces present in these bond, facet,
and tetrahedron groups. A simple treatment of representing the
distribution is to derive typical statistics (such as minimum, mean,
maximum, and standard-deviation) of the interstitial spaces
present. The characterization of bond, facet, and tetrahedron
interstices can include 2-body, 3-body, and 4-fold correlations,
respectively, in the nearest-neighbor, short-range-order (SRO)
signatures. The SRO signatures will be further “coarse-grained” to
derive statistics among their neighbors. Such “coarse-grained”
signatures are a representation of medium-range-order (MRO),
with a length scale of ~4–6 Å, which is the next-level structural
organization beyond the SRO. Upon implementation, the inter-
stice representation contains 80 descriptors, 16 SRO, and 64 MRO.
The codes for this representation can be publicly accessed in
amlearn19 (https://github.com/Qi-max/amlearn) and matminer30

(https://github.com/hackingmaterials/matminer). This representa-
tion has been demonstrated to be highly predictive, interpretable,
and generalizable in a range of MGs19.
After featurizing all atoms in the six MGs, we feed the data to a

scalable tree boosting ML algorithm, XGBOOST31. XGBOOST
implements a parallel tree boosting algorithm that is proven to
be very efficient and robust in various cases. We train two sets of
XGBOOST classifiers to identify the highest 5% and the lowest 5%
Eact atoms, respectively, in the combined dataset merged from six

MGs (Fig. 1b). Varying the threshold from 3% to 10% gives similar
results, and in general, the smaller the fraction, the better the ML
score (i.e., the easier for ML to identify). As we are dealing with an
imbalanced dataset, we do random equal undersampling three
times to create three data samples, each with 3000 positive class
atoms (the highest or lowest Eact atoms) and 3000 negative class
atoms. We then perform 5-fold cross-validation on each of the
data samples, and average the predictions on the test sets (i.e.,
averaged over 5 × 3= 15 test sets). The repeated undersampling
procedure is very useful for reducing the variance introduced by
data undersampling.
We use the area under the receiver operating characteristic

curve (AUC-ROC) as the scoring metric of the classifiers. The ROC
curve characterizes the tradeoff between the true positive rate
(TPR) and negative-positive rate (FPR)32:

TPR ¼ TP
TPþ FN

; FPR ¼ FP
FPþ TN

(2)

TPR is also known as recall or sensitivity, where TP and FN are
short for true positive and false negative, respectively. FPR is the
false-alarm rate, where FP and TN stand for false positive and true
negative, respectively. AUC-ROC, measuring the area underneath
the ROC curve, is a widely used metric to evaluate a classifier32. By
definition, an AUC-ROC of 0.5 indicates the classifier performs no
better than random chance level, 1.0 signifies perfect classifica-
tion, and the higher the AUC-ROC, the better the model is at
distinguishing the classes. Figure 2a presents the ROC curve and
its AUC in classifying the highest and lowest 5% Eact atoms,
respectively. For simplicity, these two ML problems are referred to
as “H-Eact” and “L-Eact” hereafter. We see that the XGBOOST model
trained from interstice distribution can well distinguish the high
Eact atoms from the rest of the glass, reaching a very high AUC-
ROC of 0.942. These high Eact atoms are particularly resistant to
thermal activation and “pin” the local rearrangement. While there
is an increased ambiguity in classifying the lowest Eact atoms, the
AUC-ROC is also high (0.888), indicating there is also significant
structural contrast at the soft end. One can directly observe from
the ROC curve the TPR and FPR values at various probability
thresholds for designating the classes.
Besides outputting a “label” (0 or 1) to predict whether an atom

belongs to a class or not, XGBOOST (and many other ML
algorithms) can also give continuous probability estimates, in
the range of [0, 1], to reveal the confidence level of predictions.
The probabilities can reveal the uncertainty of prediction, allow
some flexibility in using the model, and provide a more nuanced
way to assess the model. However, raw class probabilities from
nonlinear ML algorithms are often not well-calibrated and should

Fig. 2 Predicting the heterogeneity of thermally activated events. a Receiver operating characteristic (ROC) curve and area under curve
(AUC) in classifying the atoms showing the highest 5% (H-Eact problem) or lowest 5% activation energy (L-Eact problem). The dashed line marks
a random case. b Near-perfect calibration of the ML-evaluated class probability estimates, that is, ph from H-Eact and pl from L-Eact.
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be carefully checked before interpretation. Specifically, if the
predicted probabilities match the “real” class probabilities, such
probabilities are referred to as calibrated. For instance, when the
positive class probability of some data points is 0.70, ideally these
points should indeed have a probability of 0.70 to be positive. This
ideal calibration occasion is illustrated by the diagonal line in Fig.
2b. In this work, we employ a post-training calibration method
called isotonic regression33 to improve the calibration perfor-
mance of our probability estimates. As seen in Fig. 2b, the
calibration curves of ph and pl, i.e., the probability estimates from
models obtained in the “H-Eact” and “L-Eact” ML problems,
respectively, are both demonstrated to be close to perfect
calibration. The area between the calibration curve and the
perfect calibration line, as a measure of miscalibration, is very low
in both cases (Fig. 2b). Thus, our machine-learnt probability
estimates can well reflect the real class probabilities and warrant
further interpretation.
We proceed to look more into the distributions of the ML-

evaluated class probability estimates, that is, ph from H-Eact and pl
from L-Eact. Figures 3a and 3b present the overall ph and pl
distributions in the six MGs as well as the variation of Eact with ph and
pl. A wide distribution of ph and pl is observed, revealing a large
degree of heterogeneity inside the MGs. ph has a larger proportion of
atoms close to 0 and 1, again indicating that ML is more confident at
distinguishing the high Eact atoms. A strong dependence of Eact on ph
and pl is observed (Fig. 3b), that is, positively correlated with ph and
negatively correlated with pl, demonstrating the feasibility of ph and
pl serving as indicators of the thermal activation propensity. We
further visualize the distribution of Eact, ph and pl in a model Cu64Zr36
glass to allow atomic-scale scrutinization (Fig. 3c). For simplicity, only
atoms with ph or pl > 0.50 are highlighted in the ph and pl maps: ML
predicts that the probability of these atoms belonging to the highest
5% Eact or lowest 5% Eact class is greater than 0.50; if setting a class
threshold as 0.50, these ph or pl > 0.50 atoms would then be classified
as the high or low Eact class, respectively. A good correspondence can
be seen between the high Eact atoms and high ph atoms, as well as

between the low Eact atoms and high pl atoms. As reflected by the
relatively lower prediction score in the L-Eact task, there are more
false-positive atoms (high pl yet high Eact) and false-negative atoms
(low pl yet low Eact) in predicting the low Eact atoms, but still the
prediction quality is sufficiently good. These results reveal that a solid
relationship between local structure and thermal activation propen-
sity can be established by combining interstice features and ML. We
also perform direct regression of Eact using the interstice features and
the Pearson correlation coefficients and parity plots are presented in
Supplementary Table 3.

Comparison with ML models employing other feature
representations
Next, we compare our ML results based on interstice features with
those fitted from several other representations. Here we consider
a total of eight pure structural representations and three physical
signatures for comparison (Table 1). To guarantee a fair
comparison, training is performed on the same data samples
and same cross-validation splits. We train XGBOOST31 and SVM34

models with various hyperparameters and extract the best scores
for each representation. Most of the presented scores are from
XGBOOST, while the best scores of the radial symmetry functions,
bispectrum coefficients and smooth-overlap of atomic positions
(SOAP) are from linear SVM, and moment tensor potential (MTP)
internally uses linear regression to build the potential model
(Table 1). The detailed ROC curves can be found in Supplementary
Table 2. Besides, an additional feature indicating whether the
atom is Cu (0) or Zr (1) is added to each representation to help ML
decisions. This is very helpful for representations that cannot well
distinguish the atom types from the features themselves.
We start with two “baseline” models built with: (i) two one-hot-

encoded (0 or 1) variables designating whether the nearest-
neighbors around an atom form a < 0, 0, 12, 0, 0 > (<0, 0, 12, 0> if
omitting occasional facets with >6 edges) or <0, 0, 12, 4, 0>
Voronoi polyhedron or not; (ii) five integer Voronoi indices (n3, n4,
n5, n6, and n>6), where nx represents the number of x-edged facets

Fig. 3 ML-evaluated class probability. a Probability density distribution, f(p), of ph and pl in the combined MG dataset. b Strong dependence
of activation energy Eact on ph and pl. c Distribution of Eact, ph, and pl in a Cu64Zr36 - 10

9 K s−1 MG. For simplicity, only the atoms with ph or pl >
0.50 are highlighted in c. The high Eact and low Eact atoms correspond well to the high ph and high pl atoms predicted by ML.
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in the Voronoi polyhedron35. Many studies revealed that the Cu-
centered <0, 0, 12, 0, 0> icosahedra and Zr-centered <0, 0, 12, 4, 0>
polyhedra are among the most stable motifs in Cu-rich Cu-Zr
MGs36,37. In this work, ~21.4% Cu atoms of the six MGs are
surrounded by icosahedra and 6.0% Zr atoms are <0, 0, 12, 4, 0> . A
baseline model can then be simply predicting the atoms centered in
icosahedra or <0, 0, 12, 4, 0> as high Eact atoms and those not as low
Eact. We find that the AUC-ROC achieved by such baseline model is
not satisfactory, i.e., 0.673 and 0.557 in the H-Eact and L-Eact tasks,
respectively (Table 1). As seen in the Supplementary Table 2, the TPR
(recall) of this baseline model in classifying the highest 5% Eact
atoms is ~0.48, indicating that indeed only ~0.48 of the highest Eact
atoms are among the icosahedra and <0, 0, 12, 4, 0> atoms. Not
surprisingly, this heuristic model works worse in classifying the
lowest Eact atoms, as icosahedra and <0, 0, 12, 4, 0> are aimed at
prototyping the most stable motifs and not forming those motifs
does not necessarily mean that this atom is soft. This results in a
large FPR and ultimately a small AUC-ROC of 0.557 in the L-Eact task
(Supplementary Table 2). As to the second baseline model trained
from the Voronoi indices, the prediction is better, with AUC-ROC of
0.750 and 0.628, respectively (Table 1, the ROC curves are presented
in Supplementary Table 2). We see that by allowing the model to
decide from the detailed Voronoi indices instead of from several
predefined motifs only, the model can capture more subtle
structural information and make better decisions in both tasks.
These two sets of models are basically based on the well-established
Voronoi indices and are relatively simple to set up, forming the
baseline models in our tasks; and ideally, any proposed ML models
should well outperform the baseline models.
Next, we combine a group of SRO features as the third structural

representation for comparison, including characteristic motif signa-
tures and Voronoi indices35 as used in the baseline models,

coordination number (CN) within a cutoff distance (4.0 Å) or in a
Voronoi polyhedron, Voronoi volume, and bond-orientational order
parameters (ql and wl, where l= 4, 6, 8, and 10)38. This representa-
tion achieves an AUC-ROC of 0.807 in the H-Eact task and 0.634 in
the L-Eact task (Table 1, see Supplementary Table 2 for ROC curves).
The inclusion of bond-orientational order features accounts for the
increase of AUC-ROC compared with baseline model 2. The L-Eact
task remains to be a harder task than the H-Eact for the structural
representation to predict. Beyond SRO, interestingly, if we further
augment the SRO features with the coarse-grained MRO features
(taking statistics between nearest neighbors19, as applied in the
interstice representation), the predictive ability is greatly enhanced
(Table 1, see Supplementary Table 2 for ROC curves). This suggests
that it is important to bring MRO into the prediction scheme (the
importance of MRO will be discussed in more detail later).
As another important group of structural representations, we

adopt four representations that are originally designed for fitting
ML potentials: (i) radial symmetry functions17,18,20,22–24,39; (ii)
bispectrum coefficients of density functions40,41; (iii) moment
tensor potential (MTP)42,43; and (iv) smooth-overlap of atomic
positions (SOAP)44. Please see Methods for details. The ML results
are summarized in Table 1 and ROC curves are shown in
Supplementary Table 2. We see that these four representations
can all well predict the high Eact atoms (AUC-ROC > 0.90), while the
scores in predicting low Eact atoms are lower. The MTP and SOAP
descriptors achieve the best scores in this group of structure
representations. Going beyond the radial symmetry functions that
only contain radial information, including angular information in
the MTP and SOAP descriptors increases the prediction accuracy,
yet does not induce a very significant improvement. This can be
because in MGs, due to the removal of crystallographic restraints,
the angular distribution tends to be close to that preferred in

Table 1. Using various pure structural representations or physical signatures to classify the highest 5% (denoted as H-Eact problem) and lowest 5%
Eact atoms (L-Eact problem) of the combined Eact spectrum merged from six MGs (Fig. 1b).

Representation Feature number* H-Eact L-Eact

Interstice distribution 80 0.942 ± 0.004 0.888 ± 0.012

<0, 0, 12, 0, 0 >+ <0, 0, 12, 4, 0 > (baseline 1) 2 0.673 ± 0.010 0.557 ± 0.006

Voronoi index (baseline 2) 5 0.750 ± 0.009 0.628 ± 0.016

A group of SRO features 18 0.807 ± 0.010 0.634 ± 0.017

SRO+MRO features 72 0.908 ± 0.005 0.801 ± 0.011

Radial symmetry functions 70a 0.905 ± 0.008 0.770 ± 0.009

Bispectrum coefficients 30b 0.901 ± 0.008 0.761 ± 0.010

Moment tensor potential (MTP)c 288d 0.918 ± 0.008 0.784 ± 0.011

Smooth-overlap of atomic positions (SOAP) 567e 0.927 ± 0.007 0.812 ± 0.011

Flexibility volume, Vflex 1 0.845 ± 0.009 0.784 ± 0.010

Atomic shear moduli, G 1 0.690 ± 0.012 0.629 ± 0.013

Coarse-grained G 1 0.736 ± 0.014 0.674 ± 0.015

The area under the receiver operating characteristic curve (AUC-ROC) on the test set is used as the scoring metric. The reported AUC-ROC is averaged from
three times of undersampling and fivefold cross-validation on each sampled data, and the standard deviation of AUC-ROC over the fifteen cross-validation
splits is also provided.
*Except for the interstice distribution representation, an additional feature indicating whether the atom is Cu (0) or Zr (1) is added to each representation to
help ML decisions, so technically the feature number should be added with 1. This is very helpful for representations that cannot well distinguish the atom
types from the features themselves.
aNfeature=Nelems × Nr, where Nelems is the number of species in the system and Nr is the number of r selected (Methods). Here Nelems= 2 and Nr= 35, thus
Nfeature= 70.
bFor an even twojmax = 2(m-1), Nfeature=m(m+ 1)(2m+ 1)/6, where two jmax is the band limit for bispectrum components (Methods). Here two jmax is set
to 6, thus m= 4 and Nfeature= 30.
cAs MTP has fittable parameters designed to be optimized by regression, we train MTP by regression and then derive the classification AUC-ROC using the
predicted Eact on the test set (i.e., derive the TPRs and FPRs by varying the Eact threshold and calculate the area underneath the curve).
dThe levmax of MTP is set to be 20 (Methods), and the number of basis functions are 288.
eNfeature= (Nelem × (Nelem + 1) / 2) × (lmax + 1) * nmax * (nmax + 1) / 2, where rmax and nmax are the number of radial basis functions and maximum degree of
spherical harmonics (Methods). Here Nelems= 2, lmax= 8 and nmax= 6, thus Nfeature= 567.
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poly-tetrahedral packing without significant variation. Compara-
tively speaking, incorporating an effective representation of MRO,
which has been demonstrated to pose a huge effect on the glass
properties, has improved the prediction performance to a greater
degree. This is demonstrated in Table 1 for the excellent accuracy
of the interstice distribution representation with MRO incorpo-
rated, as well as the remarkable increase of accuracy for the simple
SRO features when augmented by MRO ones. Besides, in previous
studies, Schoenholz et al.17 used the radial symmetry function
representation to classify atoms with high propensity for hopping
(soft end) in L-J liquids and achieved a very high recall of ~90%.
The relatively lower accuracy in the current L-Eact task (also
corresponds to soft end) suggests that identifying atoms
susceptible to β relaxation in the solid-state MGs could be harder
than that for the parent supercooled liquids, as manifested by that
the same set of features achieve a lower score in the former
problem. Other possible factors are (i) the natural prediction
accuracy difference between Cu-Zr MGs described by EAM
potential and supercooled liquids described by pairwise L–J
potential and (ii) the combination of different composition,
different quenching rate in a single dataset may increase the
ambiguity for the radial symmetry functions.
Finally, we compare the results of the pure structural

representations with the results of three physical signatures,
namely flexibility volume Vflex

45, atomic and coarse-grained shear
moduli G46 (see Methods). Table 1 summarizes their prediction
scores and the ROC curves are presented in Supplementary Table
2. These signatures require detailed knowledge of interatomic
potentials to calculate and thus are not pure structural represen-
tations. Among the physical descriptors, Vflex fares much better
than atomic or coarse-grained G in correlating with Eact. We find
that some pure structural representations (interstice, SRO+
coarse-grained MRO, and the four ML potential representations)
are still very competitive compared with these physical signatures
(Table 1), further advocating the use of proper structural
representation, with the aid of ML, to establish the structure-
property relationship in MGs. The interstice distribution features
achieve the highest prediction score in both the H-Eact and L-Eact
tasks. Such quantitative benchmarks are important for obtaining a
clear picture of the structure-property relations proposed in MGs.

We also note that, strictly speaking, the relative performance of
each representation can be task-specific. Thus, for a future task of
interest, we recommend to conduct some rigorous benchmarking
like this to locate the best representation for maximal ML
performance.

Impact of medium-range environment on activated events
Thus far, we demonstrate that our ML model, employing the
interstice features that start from static atomic positions only, can
well predict the heterogeneity of thermal-activated elementary
excitations in Cu-Zr MGs. We next look into how the ML models
make decisions based on the input features.
ML algorithms such as XGBOOST allow quantification of feature

importance, which evaluates how each descriptor improves the
performance measure, e.g., Gini index for XGBOOST, and thus can
be particularly useful for model interpretation. For ease of
interpretation, we first remove some highly-linearly-correlated
features (Pearson correlation coefficient > 0.70) and then reduce
the feature number to 10 by a brute-force recursive feature-
elimination procedure: i) train a model with N features and derive
the ML performance; ii) iteratively eliminate each of the N features,
retrain a ML model with the remaining N - 1 features and calculate
the performance loss (if any) compared to the original model with
N features; iii) eliminate the feature with the least performance
loss. This is based on that basically, dropping unimportant features
should not degrade the performance significantly. We recursively
repeat the above procedure until the feature dimension is
reduced to 10.
Figure 4a visualizes the ultimate 10 features and their Pearson

correlation matrix. We abbreviate the subscript “interstice” as “is”;
and for several distance interstice features, the subscript “dist” in
dis-dist indicates that the nearest-neighbors are determined by a
cutoff distance rather than by the default Voronoi tessellation.
The 10 features exhibit low Pearson correlation coefficient (the
maximum is 0.63). Interestingly, we find that 9 out of the
10 survived features are describing interstice distribution in
the medium-range (i.e., with “MRO” in the feature name). This
again suggests that MRO contributes greatly to the decision
making. According to the feature importance, MROmean Std(Vis)

Fig. 4 Interpreting the ML models. a Pearson correlation coefficient of the ten features that survived the feature reduction. The coefficient
value is encoded in the color while the circle radius encodes the absolute coefficient value. Vis, ais and dis represent the volume, area, and
distance interstices, respectively, and the symbol before brackets, i.e., Std, Mean, Std, Min, denotes the statistics of these interstices in the
nearest-neighbor (SRO) environment. If there is MROstat in the feature name, this means that the SRO feature has been coarse-grained among
neighbors, i.e., taking the statistics, as denoted by the subscript of MRO, among neighbors. The subscript “dist” in dis-dist indicates that the
neighbors are determined by a cutoff distance rather than by the default Voronoi tessellation. b Feature importance of the ML models trained
in the H-Eact and L-Eact tasks. The feature importance is averaged over models obtained from the three times of data undersampling and five-
fold cross-validation in each data sample.
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and MROmean Std(dis-dist) are the most important features in the L-
Eact and H-Eact tasks, respectively (Fig. 4b). These two metrics are
evaluating the average variation of the tetrahedron volume
interstice and bond distance interstice at the medium-range
around an atom. This emphasizes the importance of local
structure anisotropy, persisting to the medium-range, to the glass
property. For the L-Eact task, MROmean Std(Vis) stands out with a
very high importance, and for the H-Eact task, the feature
importances distribute more evenly.

We then select typical hard and soft Cu (Zr) atoms and show the
distribution of tetrahedron volume interstice, Vis, and bond
distance interstice, dis-dist, in their local environment to demon-
strate the inherent structural contrast between the hard and soft
atoms. Typical atoms with high Eact (~2.9 eV) and low Eact (~0.7 eV)
are selected, and the red and purple histograms show the spread
of interstices, Vis and dis-dist, present in the coordination
polyhedron (SRO) and in the neighboring clusters (MRO),
respectively (Fig. 5a and b). We find that the Vis and dis-dist

a

b

(SRO cluster)

c

Low Eact - CuHigh Eact - Cu Low Eact - ZrHigh Eact - Zr

Feature Extraction and Principal Component Analysis 

High Eact - Cu High Eact - Zr

Low Eact - Cu Low Eact - Zr

Fig. 5 Structural contrast between the high and low Eact atoms. a Distribution of tetrahedron volume interstice Vis and bond distance
interstice dis-dist around representative Cu and Zr atoms with high Eact= ~2.95 eV. The red and purple histograms show the spread of
interstices in the coordination cluster (SRO) and that in the neighboring clusters (MRO), respectively. The SRO coordination clusters are also
visualized in the inset, with the larger blue spheres for Zr and smaller orange spheres for Cu. The subscript “dist” in dis-dist means that the
neighbors are determined by a cutoff distance rather than by the default Voronoi tessellation. b Distribution of Vis and dis-dist around
representative Cu and Zr atoms with low Eact= ~0.71 eV. c Unsupervised principal component analysis (PCA) to reduce the original high-
dimensional interstice feature space to a two-dimensional space. The color scale indicates the density level of the contours.
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distributions in the SRO of the high Eact atoms (Fig. 5a) are
distinctly more centered than that in the low Eact ones (Fig. 5b).
For the low Eact atoms, there often exist some tetrahedra or bond
segments that have very low or high content of interstice. This
would lower the stability of local environment and propel the
atom to respond to thermal excitation. Remarkably, this trend
persists to the medium-range (purple histograms). As quantified
by Fig. 4b, the MRO interstice distribution is even more important
than the SRO ones. The sharp contrast in the interstice distribution
illustrates the foundation of our ML success in distinguishing the
characteristic atoms.
Next, we use principal component analysis (PCA)47 to project

the information in the high-dimensional feature space (R10, ten
features in Fig. 4) into a low-dimensional space (R2) to visualize the
inherent data structure of the site environment signatures (Fig.
5c). PCA is a dimensionality reduction method that uses
orthogonal transformation to reduce possibly correlated features
to uncorrelated variables with key information preserved, and is
totally unsupervised (with no use of class labels and does not
need training)43. From Fig. 5c, we see that the high Eact and low
Eact atoms do tend to reside in very different regions (the ratios of
variance explained by the principle component 1 and 2 are 0.303
and 0.209, respectively). Back to the above supervised ML results,
strong structural contrast in both the hard and soft ends is also
revealed (Figs. 2 and 3). Here, both supervised and unsupervised
analyses suggest a highly inhomogeneous MG structure, with
distinctive hard (or say solid-like) and soft (liquid-like) atoms
dissolved inside.

Transferability to identifying shear transformation propensity
As mentioned earlier, in addition to thermally activated events,
another important type of elementary excitation is the local shear
transformation activated by stress48–53. The low-stress-resistance
units are usually referred to as shear transformation zones (STZs).
As discussed in the Introduction, the thermal- and stress-activated
excitations can both be interpreted in the framework of β
processes, however, the atomic-specific response can vary, due to
the different characteristics of stimulus source (uniform vs non-
uniform, protocol-independent vs dependent). This prompts us to
ask: how would our ML models trained for predicting the thermal
excitation propensity perform, when they are used to identify

STZs? Is it possible for the models to work well when transferring
to a different task?
This “between-task” test is challenging in several ways: (i) STZs

and Eact are basically different properties, stimulated by different
stimuli and thus yielding different data; (ii) the features
considered important for predicting Eact may not be optimal
for identifying STZs. The point (ii) is very likely, as in a previous
work using the interstice features to identify STZs in MGs, only
~50% of the most important features were MRO features19,
much lower than the ~90% in the Eact case (Fig. 4). Driven by this
question, we simulate athermal quasi-static (AQS) shear
deformation of a typical Cu64Zr36–10

9 K s−1 glass (Methods).
We calculate the interstice features of each atom and apply the
model trained from the L-Eact problem (which focuses on the
soft end) to derive the probability estimate pl of each atom.
Intuitively, as pl is in positive correlation with the tendency of an
atom to be easily activated by the thermal stimulus (Figs. 2
and 3), it may positively correlate with the susceptibility of atom
to be activated by stress as well.
We calculate the non-affine displacement (D2

min) relative to
undeformed state, at 4.0% shear strain, as an indicator of the
plastic susceptibility of each atom. The correlation between D2

min
and pl is presented in Fig. 6a. Given the “long-tail” distribution of
D2
min, box plots are used to present the correlation. Box plots are

useful in such case of skewed distributions, with the median (a line
in the interior of box), 25% and 75% quantile (lower and upper
ends of box), 1.5 times the inter-quartile range (whiskers
extending outside box), as well as outliers (points outside the
whiskers), clearly marked. The left figure in Fig. 6a shows
the complete box plot, and some outliers extend so widely that
the box section is squeezed. We then highlight the squeezed
section, which constitutes the vast majority of data, in the right
figure of Fig. 6a. A positive correlation between pl and D2

min is
clearly observed, evidencing our assumption that these two types
of activations could have some similar structural origins. As a
quantitative test, we use pl to try classifying STZs with the largest
5% D2

min from the rest of the glass, similar to the setting of the L-
Eact task. We vary the threshold of pl in designating the positive/
negative classes in this new STZ task, calculate the TPRs and FPRs
and derive the ROC curve in Fig. 6b. The area under the ROC curve,
AUC-ROC, is 0.810, which is a very reasonable score for such a
transferring test. This quantitative test provides additional support
to the feasibility of this “between-task” generalization.

Fig. 6 Transferring ML model to identifying STZs. a Correlation between the probability estimates, pl, from the L-Eact model and the non-
affine displacement (D2

min) at strain 4.0% of a Cu64Zr36 – 109 K s−1 glass. In the box plots, ends of box spans from 25 to 75% percentile, black
line in box represents median, whiskers show 1.5 times the inter-quartile range, and points outside the whiskers show outliers. Outliers are
marked in the left plot and are removed in the right plot for clarity. b Receiver operating characteristic (ROC) curve and area under curve (AUC)
when using the pl to identify STZs with the largest 5% D2

min.
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As discussed in the Introduction, the accuracy of STZ recogni-
tion (for example, Ref. 18 and 19) is usually lower than that of
identifying the thermally activated atoms (Ref. 17 and this work),
especially when using the same feature representation (radial
symmetry functions17,18 or interstice distribution features19). There
are several factors that can cause this performance difference. One
is the increased internal data noise of the STZ data, if the data is
collected from a single loading condition. As discussed in the
Introduction, stress-activated plastic heterogeneity is quite sensi-
tive to the loading conditions such as loading mode and
direction25,26; thus, if using data from a single loading condition,
non-trivial noise could be introduced in the collected data. For the
thermal activation data, as used in this work, the absence of non-
uniform stress eliminates the loading-related noises, and probing
sufficient elementary ART events can guarantee a well-converged
Eact to indicate the susceptibility to thermal excitation. In addition,
upon deformation, the activation of STZ proceeds in a progressive
way, that is, not all soft atoms will move in a straining step;
therefore, it usually requires a relatively large strain to collect
sufficient plastic events. However, this can introduce more
cascade activation events to reduce the controllability of
the initial undeformed structure, and the existence of long-
range elastic field in the process of deformation would also
increase the length scale of plastic heterogeneity, making it even
beyond the scope of SRO and MRO that can be described by the
structural representation.

DISCUSSION
For the ML exploration of atomic-level structure-property relation-
ships in amorphous alloys, a goal of common pursuit is
developing novel structural representation and machine learning
scheme. This paper, instead, focuses on another important aspect
– finding of a suitable target property, with minimized data noises,
to convincingly test the power of ML in correlating the structure
with the property. Through what has been presented above, we
have demonstrated that the thermally activated elementary
excitation is an excellent choice in this regard. Compared with
previous ML models on shear transformations in glasses, the
merits of our present success on thermally activated events in
MGs are multifold:

i. We reached a high accuracy for ML prediction of elementary
excitation in MGs. In this work, ML can accurately identify
atoms with the highest 5% and lowest 5% thermal
activation energy in a dataset merged from six different
MGs, reaching an AUC-ROC of 0.942 and 0.888, respectively.
These scores are significantly higher than that achieved in
predicting the propensity of shear transformation. As
discussed, this is mainly because the thermal activation
does not suffer from the effect of non-uniform, oriented
stress25,26, and can reduce the data noises by well-
converged exploration of elementary excitations. The
importance of noise reduction also has implications for
constructing high-fidelity glass datasets in the future.

ii. Our ML model is able to link structure with both local
favored and unfavored structural motifs, rather than only
identifying the latter as in previous ML literature17–21. This is
aided by the explicit and sufficient ART perturbation tests
around each atom, and the Gaussian-like distribution of
thermal activation energetics that gives sufficient resolution
to both the soft and hard ends. By benchmarking a variety
of pure structural representations and physical signatures,
our interstice distribution representation performs best in
both ML tasks.

iii. We have demonstrated that the data from multiple
compositions or processing histories can be combined to
connect with underlying structural signatures. This results

from the comparable magnitude/range of activation
barriers, for different compositions and processing his-
tories in the same MG system. Such treatment can notably
increase the variety of local environments surveyed, and
allows for structure-property relation mining in more
general terms.

iv. Our analysis provides a repertoire of descriptors that are
essential to the ML decision. We demonstrate how the ML
models make decisions based on the interstice features
and interpret why these features work in representing the
inherent structural contrast in MGs. Our data-centric
results also highlight the importance of MRO in determin-
ing the activation heterogeneity that has implications on
the underlying glass physics. Very recently, Bapst et al.54

have built graph neural networks to learn, from a large
amount of data, to encode the atomic environment, via
message-passing through an expanded neighborhood.
The models achieved impressive scores in predicting the
atomic motion in supercooled liquids and the shear-
induced events. While such deep learning techniques can
provide greater versatility and representing ability, ML
techniques based on the physics-oriented descriptors still
have their benefits. For example, interpretability is
important for gaining insight into the underlying physics.
In this regard, structure representation such as the
interstice distribution features used in this work is fully
transparent as it is easily interpretable in terms of what
each feature is representing and we can gain structural
insights that transfer. Meanwhile, structural representa-
tions are often not material- or class-specific, i.e., they are
quite general and perform the same for any glass system,
making it easier to judge whether the framework will work
outside the training environment.

v. We have conducted a quantitative “between-task” trans-
ferring test that successfully transfers the model fitted for
pinpointing the low thermal activation energy atoms to
identifying STZs upon AQS shear deformation. This
success points to some common structural origins of the
thermal-activated and stress-activated β processes. It is
interesting to extend such quantitative transferring tests
to more glass properties in the future. Despite a ton of
atom-specific properties have been studied up-to-now,
many properties may be intercorrelated; thus, despite one
ML model is trained and tested on one task, it is possible
to generalize to more tasks and gain a wider range of
utility. Forming a quantitative test on a wider range
of properties can also sharpen the general understanding
of structure-property correlations in MGs.

Taken together, these advances underscore the structural
impact on the β processes and their heterogeneity, and the
insights shed light on the role of β processes as a basic unit event
underlying a variety of properties of MGs10–12, including local
plastic deformation13,14, atomic hoping mediating diffusion15, and
structural relaxation/rejuvenation16. Our discovery, enabled by the
well-designed site environment representation and dedicated ML
models, is very useful and important as a step forward in
establishing a concrete structure-property relationship for MGs.
We have made our MG configurations and thermal activation
energy data public in figshare with the DOI of https://doi.org/
10.6084/m9.figshare.12485795, which could serve as a valuable
benchmark for future ML studies in MG research.

METHODS
MG samples preparation by MD simulation
Molecular dynamics (MD) simulations using LAMMPS55 have been
employed to prepare and analyze the Cu-Zr metallic glass models, using
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a set of optimized embedded-atom-method (EAM) potentials56. Cu64Zr36,
Cu50Zr50, and Cu80Zr20 samples containing 10,000 or 5,000 atoms (if 5,000,
we will prepare two different samples at the same processing condition)
were quenched to room temperature (300 K) from equilibrium liquids
above the corresponding melting points. The quenching was performed at
a rate of 109–1012 K s−1, as marked in Fig. 1b, using a Nose–Hoover
thermostat with zero external pressure. Periodic boundary conditions (PBC)
were applied in all three directions during MD simulation57. The timestep
was 1 fs.

Activation-relaxation technique (ART)
Initial perturbations in ART were introduced by applying random
displacement on a small group of atoms (an atom and its nearest-
neighbors)27,28. The magnitude of the displacement was fixed, while the
direction was randomly chosen. When the curvature of the PEL was
found to overcome the chosen threshold, the system was pushed
towards the saddle point using the Lanczos algorithm. The saddle point
is considered to be found when the overall force of the total system is
below 0.01 eV Å−1. The corresponding activation energy is thus the
difference between the saddle point energy and the initial state energy.
The search is performed using ART nouveau package27,28,58. For each
group of atoms, we employed ~50 successful ART searches with different
random perturbation directions.

Radial symmetry functions
For an atom i, the radial symmetry functions are described as17,18,20,22–24,39,

Gαði; rÞ ¼
X

j2α
e�ðrij�rÞ2=2σ2

(3)

where α represents an atom species in the system (Cu or Zr). rij is the
distance between atoms i and j. r is a variable constant and σ is set as 0.2 Å.
The sums are taken over all atom j whose distance to i is within a cutoff Rc

(6.5 Å). This set of features can be considered as the Gaussian-smoothed
partial pair correlation functions at different r values. Here, we vary r from
1.0 to 8.0 Å with a bin size of 0.2 Å (35 bins), generating 35 features for i –
Cu and i – Zr, respectively. We then use the 70 features as input to train ML
models on the same data and cross-validation splits to classify the high Eact
and low Eact atoms.

Bispectrum coefficients of density functions
The coefficients of the bispectrum of the neighbor density mapped onto
the 3-sphere are order parameters that can characterize the radial and
angular distribution of neighbors of an atom42. We follow the implementa-
tion of Spectral Neighbor Analysis Potential (SNAP) which uses bispectrum
as basis41. The bispectrum coefficients are calculated using the “compute
sna/atom” command implemented by Thompson et al. in LAMMPS55. We
set the twojmax as 6 and rfac0 as 0.99363. The scaling factor of the cutoff
radius, rcutfac, the cutoff radii, RCu/RZr, and neighbor weights, wCu/wZr, are
optimized by grid search and set to be 4.0, 0.7/0.8 and 1.0/0.9 for
predicting the high Eact atoms and 4.0, 1.0/1.0 and 1.0/1.0 for predicting
the low Eact atoms.

Moment tensor potential (MTP)
The MTP introduces the moment tensor descriptors43,44,

Mμ;νðniÞ ¼
X

j

fμ rij
�� ��; zi ; zj
� �

rij � ¼ � rij|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ν times

(4)

to characterize the radial (fμ) and angular information (rij � ¼ � rij) of the
neighborhood ni . The moments are then contracted to a set of basis
functions Bα that are invariant to permutations, rotations, and reflections.
In practice, all the basis functions whose level of multiplication (levBα) ≤
levmax are included. The site energies are then expanded as a linear
combination of the basis functions. In this work, we set the levmax as 20
and the size of radial basis as 4, and the number of basis functions is 288.
The radial parameters in the radial functions, the linear regression
coefficients, as well as the weights of species (Cu and Zr) are fitted
through regression of Eact using a modified version of MLIP package44. The
predicted Eact for the test atoms are then used to derive the ROC curve and
AUC-ROC for the present classification tasks (i.e., derive the TPRs and FPRs
by varying the Eact threshold in designating the positive/negative classes
and calculate the area underneath the curve). The same set of test atoms

are used for each CV split, and the remaining atoms are all used, without
undersampling, for training.

Smooth-overlap of atomic positions (SOAP)
In the SOAP formalism, the neighbor density is expanded into a radial basis
function Rn (r) and spherical harmonics Ylm as angular basis set40:

ρiðrÞ ¼
X

j

e�ðrij�rÞ2=2σ2 fcðrijÞ ¼
X

nlm

cinlmRnðrÞYlm ð̂rÞ (5)

SOAP also has achieved notable success in fitting ML potentials. In
pratical applications, the number of descriptors depend on nmax (number
of radial basis functions) and lmax (maximum degree of spherical
harmonics), as noted in Table 1. Here we set nmax= 6 and lmax= 8. The
cutoff radius for determining the neighbors, Rc, and standard deviation of
Gaussian expansion, σ, are set as 4.5 Å and 0.5 Å, respectively. The SOAP
descriptors are derived using DScribe59.

Flexibility volume and atomic shear moduli
The flexibility volume Vflex;i of atom i is defined as45:

Vflex;i ¼ xiðtÞ � xið Þ2
D E

´ V1=3
i (6)

where xi and xiðtÞ are the equilibrium position and instantaneous position
at time t of the atom i, and Vi is the corresponding atomic volume. The
calculation was obtained on short time scales when the mean square
displacement is flat with time and contains the vibrational but not the
diffusional contribution. Each sample was kept at equilibrium under a
microcanonical ensemble (NVE) at room temperature for the calculation,
which was taken over 100 independent runs, all starting from the same
configuration but with momenta assigned randomly from the appropriate
Maxwell-Boltzmann distribution.
Atomic shear moduli at room temperature were evaluated using the

fluctuation method. For a canonical (NVT) ensemble, elastic constants can
be calculated as the sum of three contributions:

CT
ijkl ¼ CI

ijkl þ CII
ijkl þ CIII

ijkl (7)

where the superscript I, II, and III represents the fluctuation, kinetic
contribution, and the Born term, respectively (see ref. 46 for more details).
To reduce the statistical error in our simulated samples, the average atomic
shear modulus (G) is evaluated as

G ¼ C44 þ C55 þ C66
3

(8)

The local moduli tensor is computed at the coarse-grained scale using
the average atomic shear moduli of the center atom and its nearest
neighbors.

Athermal quasi-static (AQS) simulation
We employ the athermal quasi-static (AQS) mode to simulate the shear
deformation of glass60. On each deformation step, an affine strain of 10-4 is
imposed along the +xy direction, followed by an energy minimization
using the conjugate-gradient method. Initial configuration is the inherent
structure of the equilibrated glass sample. The simulations were conducted
using LAMMPS55 and periodic boundary conditions (PBC) were applied in
all three directions. The plastic events were monitored using the non-affine
displacement (D2

min)
49. This is done by tracking the atomic strain of each

atom during deformation, and dissociating the strain into the best affine fit
and the non-affine residue.

DATA AVAILABILITY
The datasets used in this work have been made public in figshare with the DOI of
https://doi.org/10.6084/m9.figshare.12485795.

CODE AVAILABILITY
The codes for deriving the interstice representation can be publicly accessed in
amlearn19 (https://github.com/Qi-max/amlearn) and matminer30 (https://github.com/
hackingmaterials/matminer).
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