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A long-standing challenge in the metallic glass (MG) community has been how to quantitatively gauge
the influence of the intricate local packing environment on the response (such as the propensity for
atomic rearrangement) of the atomic configuration to external stimuli. Here we establish this
structure-property relation by representing the complex amorphous structure using a single,
flexibility-orientated structural quantity. This structural flexibility (SF) couples to a bona fide structural
representation, the pair distribution function (PDF) of individual atoms, through a weighting function
that reflects what matters in the static atomic configuration to dynamic responses. Machine learning is
used, employing microscopic flexibility volume as the supervisory signal, to establish via direct
regression an optimized weighting vector, which is proven robust for all quenching rates, deformation
conditions, and different compositions in a given (e.g., Cu,Zr,oo_») alloy system. Subsequently, the SF is
evaluated solely from the particle positions (PDF), for any structure variation, from the atomic scale up
to sample average. Strong correlations are demonstrated between SF and a broad range of properties,
including vibrational, diffusional, as well as elastic and plastic relaxation responses.

Introduction

The main objective of materials science is to establish concrete
structure—-property relations. The paradigm of “microstructure
determines properties” has been very successful in explaining
and predicting the behavior of conventional alloys. This is
because these alloys are crystals, containing a plethora of
property-controlling microstructural features, such as grains, pre-
cipitates, interfaces, dislocations, twins and stacking faults, etc.,
which can all be routinely identified under a microscope and
judiciously manipulated during alloy processing [1]. The plastic
flow, for example, is carried by well-defined dislocations and
can be quantitatively explained by the evolution of these defects
[2]. As a result, many predictive structure—property laws have
been established, such as the Taylor hardening law based on dis-
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location density [3] and the Hall-Petch relationship for grain
boundary strengthening [4,5].

In contrast, amorphous solids such as metallic glasses (MGs)
present no discernible microstructure, invariably displaying a
maze-like pattern when examined under a high-resolution trans-
mission electron microscope. In other words, atoms adopt vary-
ing local atomic packing configurations and are all potential
defects to various degrees. In terms of mechanical rigidity, MGs
are more flexible than their crystalline counterparts: an MG typ-
ically exhibits a shear modulus ~30% lower [6], with consider-
able spatial heterogeneity even in a given sample [7,8]. The
plastic susceptibility is variable as well, as nanometer-sized local
regions respond to externally applied stresses to various extent
[9-17]. The wide spectrum of local structures in an MG, i.e.,
the diverse short-range structures and their medium-range corre-
lations, as well as the subtle differences between similar local
configurations, makes it difficult to identify structural “defects”
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responsible for the plastic events, even when the static structure
(the coordinates or relative distribution of all atoms) is fully
known. It remains unclear how to quantitatively bridge the local
packing environment with its degree of likelihood for atomic
rearrangements when exposed to external stimuli (such as
applied stresses and temperature). As a result, explicit struc-
ture—property connections have been difficult to come by for
MGs [18-37], let alone robust theoretical equations [38,39].

However, it has been generally believed that tell-tale signs
about fertile sites, i.e., “defect”-like and responsive flow units
or liquid-like regions, ought to be encoded in the structure of
glasses. Research along this line of thinking found that a number
of parameters, many of which are based on physical quantities
but related to local packing structure, exhibit some degree of cor-
relation with local properties. Examples include atomic-level
stresses [40,41], configurational potential energy [25,42,43], local
elastic modulus [44], soft modes (quasi-localized low-frequency
vibration modes) [11,45], local yield stress [46,47], fictive temper-
ature [48,49], local thermal energy [26] and thermal activation
energy barrier [50,51]. However, each of these parameters is not
directly determined by the spatial arrangement of atoms alone,
but needs to be deduced from the knowledge of interparticle
interactions through extensive computations. Some other indi-
cators are more “structural”, in the sense that they specify and
focus on certain features of local atomic packing, such as free vol-
ume [27,52], short-range atomic packing order (coordination
polyhedra) [9,10], correlated local order [28,53], degree of local
five-fold symmetry (LFFS) [54], bond length deviation [55] and
bond-orientational order [56]. But the correlation between any
of these indicators and local properties is not sufficiently strong,
partly because these short range order (SRO) indicators each pro-
vides only limited information to account for property varia-
tions. Unfortunately, the degree of order and coordination in
the medium range (e.g., up to 2 nm) is difficult to decipher and
rank for an amorphous solid [28,29]. Simultaneously accounting
for several, or even “all of the above”, facets of the structural
ingredients pertaining to properties is an even more demanding
proposition. Recently this challenge was paraphrased as an intel-
lectual puzzle by the authors of a review on MGs [31]: atomic
simulations at present, and experiments in future, can reach
the point of mapping out the coordinates of each atom in an
MG; but “knowing position of every atom; ... then what to do
with all that information?” In other words, while it is desirable
to be able to predict properties solely from the (local) atomic con-
figuration, current simplified/partial description of this environ-
ment does not correlate sufficiently well with properties,
especially since the structural features influence the properties
in a rather complex way (not black and white like in crystals,
such as dislocations that carry all the action vs. perfect lattice).

In tackling this problem, recently we have come up with a
new approach by introducing a structural indicator termed “flex-
ibility volume”, vg, [57], which purposely encompasses both the
static and dynamic local information. For atom i, vs.,,; is defined
as

Vilex,i = <r2>,' - aj (1)

where (r?); and g; are the vibrational mean squared displacement
(MSD) and interatomic distance [57], respectively. Here the MSD

is used as a fiduciary detective that reports on how flexible a local
environment would be upon excitation. We have established that
Vaex quantitatively determines the shear modulus and exhibits
strong correlations with multiple properties in MGs [57]. This
robust relationship therefore solves a major part of the problem
in the last paragraph. But vg,, has limitations in two aspects. First,
Vrex 18 not just the static structure, which is the normally used and
more accessible data from both simulation models and real MG
samples. Instead, (r?); has to be mapped out to assess vz, every
time the sample changes, which is intractable in experimental
work. Second, vy is difficult to define for MGs under high stress
(pressure) or temperature, not to mention in liquid state and
shear flow as the contribution of atomic diffusion cannot be
easily separated out in those situations. So it is important and nec-
essary to have a structural quantity which can be derived solely
from static structural information and yet work as well as vyy.

Objectives and general strategy

The goal of this work is to resolve the issue above. We now move
the starting block to the static local structure in the MG. From
this initial input we set out to establish a single quantity that rep-
resents the structure in terms of its adaptation to stimuli. We
then use this new structural quantity, which will be termed struc-
tural flexibility (SF), to correlate with multiple properties, includ-
ing vibrational and diffusional relaxation properties, as well as
propensity for temperature- or stress-induced rearrangements in
response to external stimuli (thermal, mechanical, etc.). These
structure-property relations should also be applicable to (i.e.,
can be coarse-grained to) various levels/scales, all the way to a
global average for the entire sample volume. Note that in the
chain above, the initial input used in correlating with properties
will be the static structure, and the key link is to “convert” this
complex local atomic environment into a flexibility-centric sin-
gle descriptor, SF. This conversion is made possible by
machine-learning methods, and the translation takes advantage
of the established structure parameter v, This strategy will be
illustrated in detail in the following, using results in the Cu,-
Zr100—x model system.

Machine learning to link the static structure to

structural flexibility
As stated above, in correlating with properties our mandate in
this work is not to go from vg,,; as the structural input, but
instead from square one, the static structure. But, vg,; remains
our vehicle to map the static structure to a new indicator, the
SF. The v, response of a local configuration is of course influ-
enced by the atomic distribution surrounding the center atom
i, but across a distance and in a complex way. This makes it chal-
lenging to simplify the inter-relation between the two, into a
quantitative scaling. However, with the advent of the big data
era, machine learning (ML) brings a new tool box that may help
push the boundary of materials science. In fact, ML methods are
particularly suited for establishing relations where simple theory
has previously been intangible.

Before discussing step by step the structural representation,
supervisory signal, and ML protocol in the sub-sections that fol-
low, we first briefly comment on the recent use of ML to address
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structure—-property relations in glasses and supercooled liquids
[13,14,58,59]. Cubuk et al. was the first to try ML on amorphous
solids using L-J] model glasses and jammed systems, showing that
local radial, and bond-angle, distribution information can be
used to separate atoms with high (versus low) susceptibility to
displacement [13]. Wang and Jain used instead “interstice” distri-
bution as the structural representation, in an effort to make the
ML model less system-specific [59]. A separate attempt was made
by Schoenholz et al. [58] at the correlation with dynamics: they
used the magnitude of py,, [60,61], as the supervisory signals in
ML to separate out atoms with very large hopping rates. All these
previous ML attempts, however, have left much to be desired for.
First, they did training on a binary classification task but used the
result as in a regression problem [62]. They had to rely on the dis-
tance to the separating hyperplane, or a class probability esti-
mate, in describing the “softness” [58] (or quench-in softness
[59]), to evaluate each atom’s susceptibility to rearrangement.
It would be more desirable to construct a structural flexibility
quantity through direct ML regression, as will be done in this
work. Second, the (local) softness defined was property-specific,
i.e., it is trained on how “soft” the local environment is, with
respect to a particular excitation. For example, the magnitude
of none-affine squared displacement, DZ,, for a given shearing
was directly used as supervisory signals in training the ML model.
The result is then already aligned with local plastic susceptibility
under that specific loading condition. In other words, it is
“trained on one specific behavior, tested and meant for recogniz-
ing that particular behavior for the most part”. Every other prop-
erty (such as hoping rate in diffusion) may often require a
different ML model for the same MG structure. So for an MG
alloy system we are missing a general ML product that can estab-
lish correlations with all essential properties. Third, the above
suggests that when the MG structure is changed, e.g., via shear
deformation in one loading condition, to predict the response
under a different (loading) condition we may sometimes need
to re-train the ML model. As a result, each property (e.g., D%, )
may need to be evaluated a priori every time the sample changes,
as the input variable for repeated training. This means that we
cannot input static structural information only, but have to per-
form expensive atomistic computations accounting for all the
interactions (much like directly using vy ;). These shortcomings
point to a pressing need for advances in ML tactics, to reach
higher and broader predictive power while requiring less non-
structural input, which is our main objective put forward in
the preceding paragraph.

Structural representation

As mentioned earlier, the properties of a local configuration are
affected by the intricate and often collective physical and chem-
ical interactions of atoms over a (at least medium-range) dis-
tance, in addition to the positions of these surrounding atoms
in the local zone. So far, a single simple structure parameter falls
short in correlating with properties. However, the spatial distri-
bution of these atoms, i.e., where they are to begin with, is the
most straightforward and accessible structural information that
one would prefer to use, when it comes to correlating with prop-
erties. We therefore construct structure-property relations with

this “local static structure” as the baseline input. Accordingly,
we select the structural representation based on the widely used
pair distribution function (PDF).

PDF represents the probability of finding atoms as a function
of radial distance r from an average center atom [28]. The partial
PDF (i.e., the element-specific PDF) for any o—f in the MG (such
as Cu-Zr in our model system) is defined as [63]

N, Ng

N
) Iy I 2
gx/l(r) 47‘CT2AI’dN1N/; e O(T I‘,) ( )

where d is the number density of atoms in the sample of N atoms,
N, and N; are the number of atoms of species « and species f,
respectively. r; is the distance between atom i (of ) and atom j
(of p). Actually, the «—f partial PDF of a sample is an average of
the partial PDF of each single atom, over all o atoms in the sam-
ple. Now we are dealing with local configuration around each
individual atom, so we write the partial PDF of a single atom i as:

Ny

1
$0is = grdp, 2°0 ") 3)
where [ = % is the composition fraction of species f in a sample.
In fact, g(r);; of a single atom i specifies the density of atoms (or
number of atoms) of species f in the shell at distance r to the cen-
ter atom i. Once the surrounding atoms across several neighbor-
ing shells within a cut-off distance are fixed, the local packing
around the center atom i is defined. Thus the partial PDF of a sin-
gle atom includes details on local environment across several
shells, in addition to SRO, atomic volume (Q) and coordination
number (CN). The chemical order around a center atom is
included as well, when all partial PDFs of the center atom are
combined together. Therefore, we expect that the radial distribu-
tion of atoms surrounding atom i, embodied by all the partial
PDFs, can adequately describe the local static structure, or at least
closer to “all of the above” than the individual structural param-
eters mentioned earlier. This purely structural information will
comprise a multi-dimensional vector x; as our structural
representation.

A new structural quantity

The next challenge is, as discussed earlier, how to convert the
comprehensive static structure x; into a more property-oriented
and user-friendly structural quantity. We will need to i) re-cast
the “structure” in terms of the degree of flexibility of the local
configuration, and ii) do so in a way that simplifies this “struc-
ture” into a single quantity. As outlined earlier, this is achieved
by defining a ‘structural flexibility’ (SF). The SF of atom i is

SF; = (z)TX,' (4)

Here the superscript T represents the transpose of another vector
(w) that contains all the weighting factors reflecting the influence
of the various aspects in x; to flexibility. Mathematically, SF; is the
dot product of two column vectors, the static structural vector x;
and the weighting vector o, resulting in a dimensionless scalar
that can be utilized to rank property differences. Our next task
is to solve for, via machine learning (ML), the complex o that
cross-links x; and SF;.
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Partial pair distribution functions, g(r), for Cu (a and c) and Zr (b and d) atoms with the lowest and the highest 1% v,y in @ CusoZrso MG. The model contains
1,024,000 atoms and quenched at an effective cooling rate of 1 x 10'° K/s. The upper and lower panels represent g(r,.c. and g(r),.z. respectively. The
colored contour maps below g(r) highlight the difference in g(r) between atoms with the lowest and the highest 1% vg,,. The dark red (or blue) regions are
where the radial density of Cu (or Zr) atoms in the most inflexible group is much higher than those belonging to the most flexible group.

Supervisory signal

The suitable supervisory signal to be used for ML, y;, needs to
reflect how flexible a local configuration is. v4., comes in handy
in this regard, as it contains dynamic information reflecting the
wiggling propensity in the local environment while also depend-
ing on static local configuration to a large degree. Also impor-
tantly, vpg..; as a general flexibility indicator has strong
correlation with multiple MG properties [57].

We now demonstrate that there is a strong inter-relation
between local radial distribution and v, ;. The purpose of this
exercise is to justify that by carrying out ML regression on these
two, we can expect to land the o that best transforms x; into the
flexibility-oriented SF. Our analysis can also shed light on what
components/regions of the PDF really matters for flexibility. To
this end, we sort the Cu (or Zr) atoms in our CuspZrso MG model
(see Methods) into 100 groups based on their vz, ; and computed
the partial PDFs, g(r), for each group. The partial PDFs of the 100
groups gradually evolve with increasing average vy.,; but for clar-
ity, here we only contrast the extreme cases to gain some insight:
in Fig. 1 we compare the g(r) for the group of atoms having the
lowest 1% vg., (inflexible atoms) with that of the group of the
highest 1% vy, (flexible). We observe that (i) both the intensity
and the position of the first peak are clearly different between
these two groups of atoms; (ii) besides the first peak, there is
no other pronounced peak on g(r) for the most flexible atoms,
while there are more than 3 visible peaks for the most inflexible
atoms; (iii) for the inflexible atoms, almost no atoms fall in

between the first and second peaks (wide trough with intensity
close to 0). The colored contour maps below g(r) show the differ-
ence in g(r) between atoms with the lowest and the highest 1%
Vaex- The dark red regions are where the radial density of Cu
atoms is high, corresponding to the most inflexible group (dark
blue regions for Zr). This is to be contrasted with the light red
regions in between that correspond to the most flexible group
(light blue for Zr). (iv) for Cu atoms, the first peak intensity ratio
of Cu—Cu to Cu-Zr is greater than 1 for inflexible atoms, while
that for flexible atoms is less than 1. For Zr center atoms, the first
peak intensity ratio of Zr—Cu to Zr—Zr is greater than 1, deviating
from the global composition ratio of Cu to Zr (CusoZrsp). This
indicates that chemical order also plays a role in v, together
with topological arrangement.

The findings in Fig. 1 suggest that, for atoms to be inflexible,
they tend to require more surrounding Cu (Zr) atoms to appear
in dark red (blue) regions, see the contour maps below g(r) in
Fig. 1, and less atoms to reside in other regions. In other words,
the larger the ratio of neighboring atoms in the dark regions
(peaks) to those in the light/bright regions (troughs), the more
inflexible the central atom will be. Our results are consistent
with, but much more convincing than, the hint mentioned in
Ref. [13], where the authors contemplated that “soft” particles
would have environments with fewer particles in their nearest
neighbor shells but more in the troughs in between the shells.

Again, Fig. 1 helps to establish that the local flexibility (Vgex,i)
is intimately connected with the local static structure (x;)around
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an atom. The next question is “to what degree and how to quan-
tify”. This is where, and why, we bring in ML regression to secure
the optimized w. We reiterate that while vg,, ; — property correla-
tions have been established [57], that did not fully meet our
objective. This is because v, is not just static structural infor-
mation, which is now our intended structural input to correlate
with properties. In the meantime, also note that because of the
universality and versatility of vg,,;, a single ML model based on
it would allow SF to correlate with multiple properties. In this
context, Vg, ; serves as an ideal ML supervisory signal.

The machine learning model

We now proceed to develop a concrete ML model to assess the
flexibility of each atom from purely structural information
embedded in x;. Now we will specify the exact forms of x;,y;
and o to be used. Given that the g(r) of a single atom is actually
zero for the majority of the radial distance r and thus contains
much redundant information, instead of using discrete PDF of
each atom in the surrounding, we use Gaussian functions to
weight the radial density at various distance r + ¢ from the cen-
tral atom i. The resultant structure function of each atom
[13,58] is then

— - \2
aln= Y exp(— %—”) (5)
jep.ri<rc

where 7;is the distance between the central atom i and the neigh-
boring atom j of species f (Cu or Zr, here), within a cutoff 7, = 3.0.
Here 7 = r;/1,, where r,, is the position of the first peak in the cor-
responding g(r) of atoms with the lowest 1% vge,; as shown in
Fig. 1. The purpose of using this reduced distance here is to facil-
itate the check (later) if a ML model trained on one MG system
can be transferred to other MG systems (nearly the same ML
result can be achieved using real distance and a cutoff distance
of 6.6 A). For various 7 (within the range between 0.6 and 7., in
increment of bin width ¢ = 0.05) and $, G/(F) measures the den-
sity of atoms of each species f at distance 7 + ¢ from the central
atom i [58] and thus contains similar structural information as
that in Eq. (3). A set of G/(F) at different distance 7 for species 8
can be viewed as Gaussian weighted partial radial distribution
function for f atoms surrounding each reference atom i. All
G (7) sets for different ff and a constant bias term b = 1 (the train-
able parameter corresponding to the bias term is contained in the
weight vector w) are then assembled into a vector x;,

x; = [G{(71), GrU (Fa), -+ G (Fn), G (F1), GP (F2), -+ G (Fm),
b=1] (6)

As noted earlier, this represents the static structure to be used
to describe the local environment of atom i, for ML as well as in
the structure-property relations we establish later.

We use y; =In(vgey,i) as the supervisory signal or target value.
The use of natural logarithm makes training easier, when the dis-
tribution of the target value is close to a normal distribution.
Through direct ML regression, we “fit” x; and our actual y; data
to obtain the best weighting vector w. In the context of Eq. (4),
this means that the predicted dimensionless SF; targets and
approximates In(vaei), keeping/reflecting the same ranking
order as that of vg., ;. The regression was carried out using L2-

regularized L2-loss support vector regression (SVR), which is a
linear algorithm, through minimizing the following loss func-
tion via adjusting the :

1 1
L= EwTw + CZ:‘:I [max (0, |y1. — me,-| _ (0)}2 (7)

where C is a regularization parameter and ¢ > 0 is a parameter to
specify the sensitiveness of the loss [64]. Again, with this weight-
ing (scaling) function established through ML, we arrive at a sin-
gle SF;, which, being a scalar flexibility indicator, offers a power
similar to vg.; in correlating with various (other) properties in
MGs. Moreover, now that we have finished feeding the vge;
information into w, from here on the SF can be computed solely
from the x;. In other words, the static information about atomic
positions is our initial, and from now on the only, structural
input.

In the regression tasks, a high Pearson correlation coefficient p
of 0.84 (and 0.82) between predicted and true values of y; was
achieved for the test set for Cu (and Zr). This quantitative rela-
tion is a further step of the qualitative connection between the
local packing environment and flexibility observed in Fig. 1. As
shown in SI, in classification task to separate out the least flexible
atoms, our accuracy is as high as 98.4%. Because the data sets
used in ML are sufficiently large, there is no over-fitting issue
and the ML result is not sensitive to the regularization parameter
C when Cis larger than 1, as shown in Fig. S1. To ensure that our
ML model can be applied across a large composition range in a
MG system where glassy states can be obtained in experiments,
our training and testing data sets are composed of atoms from
CuyZripo_x MGs at 9 compositions (x = 30, 35, ..., 70, in step of
5). We have also confirmed that the ML model trained on the
data set composed of atoms from a single composition has the
same efficacy as that from 9 compositions, and can thus be trans-
ferred to other compositions in the same MG system. This is
because the former data set was sufficiently large that it already
covers the majority of the possible variations of local environ-
ment Cu (or Zr) atoms would see in the Cu-Zr system (see discus-
sion in SI). As shown in Fig. S2, adjusting the value of 7. and ¢ in
G!(7), or using neural network regression, did not yield visible
improvement. Using interstice distribution [59] as structural rep-
resentation lowered p slightly. Combining bond-angle structural
functions with radial structural functions improved p only
slightly, which is consistent with the observation in Ref. [58].
This further justifies the use of the local radial distribution alone,
which is clear and simple in its physical meaning, as our struc-
tural representation (x;).

The high p achieved through SVR between o’ x; and In(Vex,i)
indicates a successful regression producing an optimized w. As
such, the evaluation of SF; from here on no longer requires the
computation of v, ;. Purely structural information embedded
in x; would suffice. In other words, once the machine-learned
o is in hand, this same weighting vector o will be used as the des-
ignated machinery to convert static structural information into
the “structure” in the context of flexibility, for this entire given
MG alloy system. As can be seen from Equation (4), all that is
needed to calculate SF; is x;, which comes from the static atomic
positions in a sample. We stress here that even though we have
involved, through vp, ;, the dynamics of atoms in the training to

52



Materials Today ® Volume 40 ® November 2020

RESEARCH

construct w, the latter is not a dynamical quantity but a struc-
tural one: it reflects the important aspects of the structural envi-
ronment x; that matter to the atomic flexibility in its dynamic
response. The same can also be said for SF;, which builds upon
but goes beyond the static x;.

In what follows, we will demonstrate using the Cu,Zr,00_x MG
models the ability of a single SF quantity to strongly correlate the
(local) structure with multiple (at least five) microscopic/macro-
scopic properties, including shear modulus, soft vibrational
modes, the boson peak, as well as the barriers for thermal acti-
vated rearrangements and stress-driven shear transformations.
This represents a broad range of MG responses, from vibrational
to diffusional to elastic/plastic relaxation events.

Correlations between SF and MG properties

Strong SFi—vgey; correlation for all MGs

As the ML model was trained and tested on vg,, ;, we first antici-
pate a strong correlation between the SF; and Vg, ;, in other Cu-
Zr MGs quenched at different cooling rates and at different com-
positions, those that were never involved in our ML training or
testing. This is indeed seen in Fig. 2 for Cu atoms (and S3 for
Zr). The p (displayed on these maps) between SF; and In(vp,,:)
for Cu (Zr) atoms in these samples is almost the same as that
in previous ML testing (shown in Fig. S4), confirming the gener-
alizability of our ML models. The p is much higher than the cor-
responding p between Q; (or LFFS;) and In(vs ), shown in
Figs. S5-8. As can be seen from Fig. 2 and Fig. S3, the largest scat-
ter/deviation is mainly for atoms with extremely large Ve
which are most sensitive to thermal fluctuation. If plotted
against sample-averaged vy, the sample-averaged SF for Cu (or
Zr) atoms scales linearly with it, as seen in Fig. 3a and b (or

Fig. S9a and b). This is expected, as SF represents the flexibility-
centric “structure”, a dimensionless manifestation of V.
Fig. S10 shows that the sample-averaged SF for Cu (or Zr) atoms
increases with increasing cooling rate or Zr concentration, which
is the same trend that v, is known to exhibit [57].

Correlating structural flexibility with quasi-localized soft modes
The next demonstration is for the correlation between SF and the
quasi-localized low-frequency vibrational modes [11,45]. The
correlation between these two is expected to be strong, as the lat-
ter is known to correlate with the local atomic packing structure
[45] and should correlate with vg., [57], both being ingredients
fed into SF. In Fig. 4a, we plot the distribution of the Cu atoms
(the corresponding plot for Zr is in Fig. S11a) with the highest
and the lowest 10% of SF; (from 10 different CusgZrso MGs) ver-
sus the participation fraction in soft modes, p, obtained by nor-
mal mode analysis (see details in methods section). As seen
from Fig. 4a (and Fig. S11a), the maximum, mean and minimum
values of p for Cu (Zr) atoms with the highest 10% SF; are all
much higher than corresponding values of Cu (Zr) atoms with
the lowest 10% SF;. To demonstrate that this correlation is
strong, we contrast it with Fig. 4b (and Fig. S11b) where no obvi-
ous correlation is present with atomic volume Q;: the distribu-
tions for the highest and the lowest 10% of Q; overlap on top
of each other. The correlation between SF and p also exists for
Cu-Zr MGs with other compositions and processing history
(cooling rates). We sorted Cu (Zr) atoms in each sample, based
on increasing magnitude of SF;, into bins each containing 10%
of all the atoms and then computed the average p for the atoms
in each bin. As seen from Fig. 4c and d (and Fig. S11c and d),
there is a clear trend that the higher the SF, the larger the p.

(3)2 : —(b) ; n(c) . .
p=0.82 2r p=0.80 1 p=0.78
= 1.l | -3t ]
s 3
k=4
4 : 1 4t g 1 —4r ' !
@ v SO A Cp— =
_2 - -
p=0.78 p=0.81 p=0.87
= —3 1 3t d
& 31 -
<
k=1 4t |
4t S : ;
—4 I f I "h /
0.2 0.4 0.1 02 03 0.0 0.2 0.4
SF, SF, SF,

!

FIGURE 2

!

<
4
o
[
3
o<
®
g
=
b
o
I
v
=
n
W
o

Correlation between structural flexibility SF; and flexibility volume vy, ; of Cu atoms in Cu-Zr metallic glasses (MGs). The color in each plot scales with the
density of atoms, dark (bright) corresponding to high (low) density of atoms. The Pearson correlation coefficient p between SF; and In(vg,,;) for each sample
was shown in each figure. (a-c) Correspond to CuseZrso MGs (31,250 atoms) quenched at cooling rates of 1 x 10%,1 x 10" and 1 x 10" K/s, respectively. (d-
f) Correspond to CuspZrso, CuseZrso and CuzoZrso MGs (32,000 atoms), respectively, quenched at the same effective cooling rate of 1 x 10'° K/s. The
corresponding plots across the SF; range of the Zr atoms are shown in Fig. S3.
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Correlating structural flexibility with the boson peak

Boson peak (BP) is one of the universal features of glasses and
typically ascribed to an excess vibrational density of states
(VDOS). The origin of BP is still a matter of ongoing debate
[65-71]. It has been shown that there is a strong correlation
between the vibrational MSD and BP [67,68]. We thus expect
the SF to have a strong correlation with BP. Fig. 5a shows the
VDOS g(w) of a CuspZrsoMG (containing 1,024,000 atoms and
quenched at 1 x 10'° K/s), which was obtained by the Fourier
transform of velocity auto-correlation function [67,72] (see
details in Methods). The BP can be observed easier by plotting
reduced VDOS g(w)/w? over w, as shown in Fig. 5b. To check
the relation between SF and BP, we sorted all Cu (and separately
Zr) atoms in the MG based on the magnitude of SF; into groups
each containing 2.5% of these atoms and then calculated the
BP intensity (Igp) contributed by the group. The Igp of each group
was plotted against group-averaged SF, as shown in Fig. 5¢ (S12a).

A strong correlation between BP intensity and SF is apparent
in Fig. 5c (S12a). For comparison, we plotted in Fig. 5d (S12b)
the BP intensity versus a recently introduced orientational order
e,
with BP [70]. The difference in Izp between Cu (or Zr) atoms with
the highest and the lowest 2.5% SF is 445 (370) uTHZ, several
times larger than the 119 (69) UTHZ2 between the highest and

the lowest 2.5% @?P

parameter,

, which was shown to exhibit good correlation

. This much better contrast is not a surprise,

given that SF contains much more information while ‘6?1)

is just
a simple topological SRO parameter. The obvious correlation
between SF and BP also holds for Cu-Zr MGs with different com-
positions and processing history, as shown in Fig. 3c and d (S9¢
and d).

The strong correlations so far between SF and vibrational
behavior are somewhat expected, because vibrational displace-
ments are directly involved in the vg,, ; we feed as the target value
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FIGURE 3

Correlation of structural flexibility SF averaged over all Cu atoms in a given MG with multiple macroscopic properties, for Cu-Zr MGs quenched at different
cooling rates and at different compositions. The left column shows CuseZrso MGs (31,250 atoms) quenched at cooling rates of 1 x 10, 1 x 10'°, 1 x 10",
1 x 10 and 1 x 10" K/s and the right column shows Cu,Zr;g0_x MGs (where x = 30, 35, ..., 70) (32,000 atoms) quenched at same effective cooling rate of
1 x 10"° K/s. The four rows, from top to bottom, are for four different sample-averaged properties for Cu atoms: vg,,, boson peak intensity /gp, shear modulus
G and fictive temperature T;. The dash lines serve as a guide to the eye.
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Structural flexibility correlates strongly with the participation in quasi-localized soft modes for Cu atoms. (a) Cu atoms with the highest 10% of SF; show
obviously higher participation fraction, p, than those with the lowest 10% SF;. The same cannot be said when attempting to correlate p with (b) atomic
volume ;. The data are from 10 different CusoZrso MGs each containing 10,000 atoms and quenched at the same cooling rate of 1 x 10'° K/s. (c) and (d) All
the Cu atoms in a Cu-Zr MG are sorted based on their SF; value into bins each containing 10% of the atoms. An average participation fraction (p) is then
calculated for the atoms in each bin, and plotted to demonstrate the strong correlation with SF. The samples in (c) are CusoZrsqg MGs each containing 10,000
atoms and quenched at three different cooling rates. The samples in (d) are Cu,Zr;00_x MGs (x = 30, 50 and 70) each containing 10,000 atoms and quenched

at a cooling rate of 1 x 10'° K/s.

in working out the machine-learned w. From here on, we move
away from vibrational properties and establish correlations
between the SF and several other key MG responses upon ther-
mal and mechanical excitation. Note that in our approach relax-
ation events and shear transformations are not input variables in
ML at all. Again, as we remarked earlier, we continue to project
strong correlations across the board, because SF; has been
informed by Vg, which is known to correlate well with (and
therefore can “recognize”) many MG properties [57].

Correlating structural flexibility with elastic constants

The shear modulus, G, a key parameter in MGs. Since G has been
shown to be deterministically dependent on vg,, for all MGs of
different compositions and processing history [57], we expect a
clear relation between SF and G. This is indeed observed in
Fig. 3e and f (S9e and S9f), for the sample-average. As an exam-
ple, Fig. 6 (S13) shows the spatial correlation between SF; and
local elastic moduli (C44) of Cu (Zr) atoms in a slab having a
thickness of 4.0 A cut from a CusoZso MG, where most of atoms
with the lowest 5% SF; (white circles) are located in regions with
large (dark red region) local elastic moduli (C44). Correspond-
ingly, the highest 5% SF; (black circles) coincide mostly with
the small (light regions) Cy44 regions. Fig. S14 suggests a similar
correlation for other Cu-Zr MGs at other compositions or with
different cooling rates.

Correlating structural flexibility with stress-driven shear
transformation

We next demonstrate the strong correlation of SF with stress-
driven shear transformations. Athermal quasi-static shear (AQS)
to a global strain of 5% (well below their yielding strain) was per-
formed on Cu-Zr MG simulation models with various composi-
tions and processing history, and then all Cu (or Zr) atoms in
each sample are sorted based on their escalating magnitude of
SF; into bins each containing 10% of the total Cu (or Zr) atoms.
Each bar chart in Fig. 7 (and S15 for Zr) shows the distribution of
Cu atoms that have the top 5% non-affine squared displacement

(Dzmm) [33] upon AQS. Here the vertical axis is the fraction of such
Cu atoms, out of the total atoms in each bin. These histograms
clearly show that the higher the SF; of atoms, the larger the like-
lihood of participation in stress-driven shear transformation. The
correlation is much stronger than those attempting to relate D%,
with Q; or LFFS;, as shown in Figs. S16-19. The contour maps in
the row below each bar chart in Fig. 7 (§15) show a strong spatial

correlation between SF; and D, on a slab of thickness of 4.0 A
arbitrarily cut from each sample.
One may notice that only <15% atoms out of those with the

top 5% D2,

are in the top 10% of SF;; this is because shear trans-

formation or D?. also depends on loading conditions, such as
min

temperature, strain rate, loading orientation. For instance, the

2
min

same local configuration can have very different D, ., when the
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Correlation between structural flexibility and Boson peak. (a) and (b) show vibrational density of states (VDOS) g(w) and reduced VDOS g(w)/w? of a CusyZrso
MG containing 1,024,000 atoms and quenched at effective cooling rate of 1 x 10"° K/s. In (c) and (d), all the Cu atoms in the MG are sorted based on SF; and
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FIGURE 6

Spatial correlation between structural flexibility (SF;) and local elastic moduli
(Cyqq) for Cu atoms. The contoured map shows the spatial distribution of
local elastic moduli (C44) of Cu atoms in a slab having a thickness of 4.0 A
cut from a CuseZsg MG (31,250 atoms and quenched at a cooling rate of
1 x 10 K/s). The white (black) circles superimposed in the map mark the
locations of Cu atoms with the lowest (highest) 5% SF;.

, into bins each containing 2.5% of the atoms. The intensity of the boson peak, Igp, is then calculated for each group of the atoms,

shear is performed along different directions [33,47]. To take this
into account, the Dfnm of a CuspZrso MG was averaged over 4320
different loading conditions (see detail in caption of Fig. S20). As
seen in Fig. S20, now when we examine Cu atoms having the top
5% average D2, their fraction in the bin of the highest 10% SF;
almost doubles that in Fig. 7 (S15), with almost none residing in
the bins for the lowest 20% SF;. This convincingly establishes

that SF; correlates strongly with D .

Structural flexibility as an order parameter to monitor plastic
flow in MGs

Four decades ago, Spaepen [27] developed strain rate equations
to describe how deformation parameters (stress, temperature,
etc.) affect the plastic flow behavior of MGs, employing free vol-
ume as the order parameter. However, as pointed out by Shi et al.
[9,10] and Egami [73], free volume cannot be unambiguously
defined for MGs, which are not hard sphere systems. Free volume
is also not sensitive to specific atomic scale structures or the ther-
momechanical history of MGs. It is therefore desirable not to
depend solely on the concept of free volume to model plastic
flow for MGs. In the preceding section, we have demonstrated
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FIGURE 7

Strong correlation between structural flexibility (SF;) and plastic susceptibility for Cu atoms in Cu-Zr MGs with various compositions and processing history.
The simulation box was subjected to athermal quasistatic shear to a global strain of 5%. In the first row, each bar chart corresponds to one CusyZrso MG which
contains 31,250 atoms and was quenched at a specific cooling rate g labeled on top. In the third row, each bar chart corresponds to one Cu,Zr;go_x MG
composition, for a model of 32,000 atoms quenched at the same effective cooling rate of 1 x 10'° K/s. Each bar chart shows the faction of Cu atoms with top

2

5% non-affine squared displacement (D,

), distributing the total number of these most-transformed Cu atoms into 10 bins each containing 10% of the total

Cu atoms. Each contoured map below the bar chart shows the spatial distribution of SF; of Cu atoms, in a slab having a thickness of 4.0 A cut from the

2

corresponding sample. Red (blue) corresponds to high (low) SF;. White spots superimposed in the maps mark the locations of Cu atoms with top 5% Dy,
mostly overlapping with the red regions. The corresponding charts and maps for Zr atoms are shown in Fig. S15.

that the machine-learned microscopic structural parameter, SF,
strongly correlates with local plastic susceptibility in MGs. It is
natural to ask if the evolution of SF during deformation can be
used to predict the change of flow stress with increasing strain.
We did AQS on Cu-Zr MGs with various compositions and pro-
cessing history along +xy direction and monitored the evolution
of stress, potential energy (PE) and system-averaged SF of both
Cu and Zr atoms with strain. Fig. 8 confirms that the change of
system-averaged SF correlates closely with both the flow stress

and PE during deformation (note that volume is constant during
AQS). Fig. S21 shows the distribution of D,znin when a CusgZrsg
MG (quenched at cooling rate of 1 x 10° K/s) was strained to
15%. To check if the change of SF could reflect the structural dis-
ordering in the region of shear localization (shear band), we
divided the sample into 20 layers with equal thickness of ~4 A
parallel to the shear band plane (xz plane) and monitored the
evolution of the average D, SF, and the number of atoms (N,
which scales with the packing density and free volume content,
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Evolution of stress (a and b), potential energy (PE) (c and d) and system-averaged SF of Cu (e and f) and Zr (g and h) with strain. The corresponding values at
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over a range of cooling rates from 1 x 10° to 1 x 10'® K/s. Right column is for Cu,Zr,40_x MGs each containing 32,000 atoms and quenched at same effective

cooling rate of 1 x 10" K/s.

because the volume in each layer is the same) within each layer
with strain. As can be seen from Fig. S22, when a single shear
band forms at ~12% strain, both D?, and SF in all layers show
a sudden change, and later deformation is mainly concentrated
within the single shear band. The SF in the band is much higher
than other regions. In contrast, the change of N in each layer
seems random. As a specific example, Fig. S23a and b show the
pronounced contrast of SF in and outside shear band when the
sample was strained to 15%. These suggest that SF can serve as
a single quantified order parameter to monitor the structural evo-
lution upon straining and may possibly be incorporated into the
formulation of plastic flow in MGs. In this regime, the SF is actu-
ally a more sensible parameter to use than vg., to monitor the
degree of structural flexibility of atoms. This is because, after glo-
bal yielding most of the atoms are involved in the flow and the
MSD rises drastically along with straining, containing not only
contribution from atomic vibration but also contribution from

shear-transformation assisted atomic diffusion. In contrast, SF
is a simple quantity that requires only static structural informa-
tion to calculate once an optimum o is in hand, as stated earlier.
We note here that the current work is focused on monitoring
local structure and predicting local shear transformation events,
which are the basic unit of plastic activities. It is however not
meant to cover all the mesoscopic or macroscopic plasticity
behavior of MGs. When it comes to the ductility of a bulk MG
under deformation, multiple length scales including the long-
range soft spots [74] and shear band interactions need to be taken
into account, but are beyond the scope of the present paper.

Correlating structural flexibility with thermally activated
relaxation events

Since v,y is known to have a good correlation with the activation
energy barrier, AE, for thermally activated f processes including
relaxation [57], which are related to glass transition, aging,
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FIGURE 9

Correlation between structural flexibility and thermally activated relaxation events for Cu atoms. Distribution of thermally activation energy (AE) of Cu atoms
in a CusoZrsoMG (31,250 atoms and quenched at cooling rate of 1 x 10° K/s) characterized using ART nouveau. (a) Shows the two groups with the highest and
lowest 10% of structural flexibility (SF;), and (b) is for the two groups with the highest and lowest 10% of the values for the atomic volume (€)). The difference
in average AE between the two groups in the case of SF; is 0.42 eV, much larger than 0.15 eV in the case of Q;. In (c) and (d), all the Cu atoms in each
composition or cooling rate are sorted based on SF;, into bins each containing 10% of the atoms. An average activation energy is then calculated for the
atoms in each bin, and plotted to demonstrate the correlation with structural flexibility. In (c), all samples are CusoZrsoMGs and the data for cooling rates of
1 x 10" and 1 x 10" K/s are from 5 samples each containing 2000 atoms while data for cooling rate of 1 x 10° K/s is from one sample containing 31,250
atoms. In (d), all samples are quenched at same effective cooling rate of 1 x 10'° K/s and the data for each composition are from 5 samples each containing

2000 atoms.

atomic hopping and other important properties in MGs, we also
expect a strong correlation between SF and AE. We searched 30
relaxation events centered at each Cu (or Zr) atom in a CusgZrsg
MG (31,250 atoms and quenched at 1 x 10°K/s) using the
activation-relaxation technique (ART nouveau) [12,75,76] (see
details in Methods). We then compared the distribution of AE
of these events with the highest and the lowest 10% SF;. As seen
in Fig. 9a (Fig. S24a), there is a marked difference in average AE
between the two groups, 0.42 (0.26) eV. In contrast, the distribu-
tions for atoms with the highest and the lowest 10% Q; almost
overlap on top of each other, and the difference in average AE
is much smaller, as shown in Fig. 9b (S24b). We also sorted Cu
(Zr) atoms in Cu-Zr MGs with various cooling rates or composi-
tions based on SF; into bins each containing 10% of these atoms
and calculated the average AE for each bin. All these samples
show a clear correlation that the higher the group-average SF,
the lower its average AE, as show in Fig. 9c and d (S24c and d).

In addition, fictive/effective temperature () is another way
to represent the average structural state of glassy materials
[48,49,51]. Previously, Liu et al. [51] showed that for MGs at a
fixed composition, the system-average AE changes monotoni-
cally with cooling rate and thus correlates with T;. Such a trend
is also seen for our CusoZrso, as shown in Fig. S25a, but absent
for different compositions (Fig. S25b). Thus, a correlation

between the system-average SF and T is expected. This is indeed
observed, as shown in Fig. 3g and h (S9g and h).

Conclusion

Our results above bring about several advances over previous
efforts to establish structure-property relations in MGs, includ-
ing recent attempts employing ML. First of all, to probe into
the structural origin of MG behavior, we have taken the perspec-
tive that the (local) properties should be controlled by a more
property-oriented and flexibility-centric “structure” that combi-
nes comprehensive structural attributes including where and
how the surrounding atoms are distributed spatially, their
(short-to-medium-range) interactions, and the dynamic wiggle
room indicative of the collective agitation of the (local) atomic
configuration. A sensible approach is to cover all these grounds,
absorbing and summarizing them into a “cover-all” but simple
structural quantity. We did so with SF. Second, this SF; quantity
is still based on x;, which is about the atomic coordinates across
several neighboring shells embedded in the partial radial
(atomic) density distributions. In other words, our approach
allows the “structure” in the structure—property relations to be
assessed from static packing environment, x;. Third, because x;
is too complicated for a quantifiable correlation with properties,
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this initial structural input is translated/converted into a SF;,
which is informed by how responsive the atomic configuration
would be upon excitation. Here through ML we have taken
advantage of our recently established atomic vy, ; as the infor-
mant. The fourth advance is that we have used ML regression
to link the complex local radial density distribution (x;) and flex-
ibility. This direct linear regression gives us an optimized w with
high Pearson correlation coefficient. The SF combining the (x;,
) information is a structural metric of each atom’s flexibility,
beyond the previous classification approach defining “softness”
(or “quench-in softness”) as the distance to the separation plane
in hyperspace [58] (or estimate of class probability [59]). Fifth,
while a simple and single quantity, the resultant SF is shown to
be indeed indicative of “structure” in terms of its behavior, i.e.,
its degree of responsiveness. Strong correlations with a variety
of (microscopic and macroscopic) properties have been systemat-
ically demonstrated, particularly those not involved in the ML
training process, including both stress-driven and thermally acti-
vated relaxation events. That is, we have achieved a wider range
of utility with just one ML model, enabling the correlation of SF
with at least five different properties. Sixth and finally, the same
weighting function (vector o in multi-dimensional space) is
found applicable for Cu-Zr MGs with different compositions
and processing history. The same machine-learned bridge
remains effective as the avenue to various correlations through-
out a MG alloy system. The SF can then be evaluated from purely
structural information only, requiring no further learning or re-
learning when the structure changes upon processing or defor-
mation. This is therefore a useful step towards structure—property
relations with minimized non-structural input (note that the lat-
ter can be either impossible to acquire, or computationally too
expensive). These six merits, taken together, have gone a long
way in answering the call earlier, i.e., the directive to bridge the
structure on the scale and scope of local PDF with all the key
properties. For instance, one can now use the magnitude of SF
to gauge if the changes processed into the static structure would
improve the MG towards desired properties, such as higher plas-
ticity and fracture toughness.

Methods

Sample preparation

Binary Cu,Zrigo_x MG models with different sample sizes at dif-
ferent compositions were constructed through classical molecu-
lar dynamic (MD) simulation [77], with an optimized
embedded atom method (EAM) potential, adopted from Ref.
[78], as implemented in LAMMPS [79]. The largest time step used
in this study is 2 fs. After adequate equilibration at 2500 K, the
liquids of those samples were quenched to S0K in the NPT
ensemble using a Nose-Hoover thermostat with zero external
pressure. The periodic boundary condition was applied in all
three directions. In this work, to save computation time, some
samples were first quenched to 1500 K at a rate of 1 x 10" K/s,
followed by 1 x 10'% K/s to 1000 K, then at the desired rate (effec-
tive cooling rate, in the text) to 500 K, and finally at 1 x 10" to
50 K. This cooling schedule was verified not to cause noticeable
difference in properties. All samples were equilibrated for 2 ns
at 50 K before calculations of various properties. All atomic coor-

dinates used in structure analysis are extracted from inherent
structure obtained via energy minimization with conjugate gra-
dient (CG) algorithm. Voronoi tessellation analysis [78] was
employed to obtain atomic volume, and global shear modulus
G was calculated using the fluctuation method [80].

Calculation of vibrational MSD

Each sample was kept in equilibrium under a microcanonical
ensemble (NVE) at 50K to calculate the vibrational MSD. The
MSD of atom i is defined as ((x;(t) — X;)?), where X; is the equilib-
rium position of atom i. The MSD was computed on short time
scales when the MSD is flat with time, and contains the vibra-
tional but not the diffusional contribution. To reduce the influ-
ence from thermal fluctuation, the calculated MSD was
averaged over 100 independent runs, all starting from the same
configuration but with momenta assigned randomly from the
appropriate Maxwell-Boltzmann distribution [81,82].

Machine learning

In all ML tasks, we treat Cu and Zr separately as two species hav-
ing different favorite local packing [28]. Both classification and
regression were performed, executed in LIBLINEAR package
[64]. In the classification task that separates out atoms with extre-
mely small v, ; from other atoms in CusoZrso MGs, the training
and testing data sets were selected from Cu (Zr) atoms with the
lowest 0.36% (0.18%) Vfex i in 150 CusoZrso MGs, each contain-
ing 32,000 atoms and quenched at effective cooling rate of
1 x 10' K/s. These inflexible atoms were label as y;= —1. The
same number of Cu (Zr) atoms randomly selected from the
remaining atoms were labeled as y;=+1. The ratio of instance
number, of training set to testing set, is 4:1.

For the regression task, two different types of datasets were
used. The first type contained a total of 1.35 million Cu (or Zr)
atoms, i.e., 150,000 Cu (or Zr) atoms from each of 9 Cu,Zr;g9_x
samples (x = 30, 35, ..., 70, in step of 5). The nine MGs each con-
tained 500,000 atoms and was quenched at an effective cooling
rate of 1 x 10'°K/s. The second type used individual composi-
tion, and all Cu (Zr) atoms in the sample (each totaling
500,000 atoms) were used to construct the corresponding train-
ing and testing data sets at that composition. In addition, one
very large dataset for CusoZrsy was constructed, using all Cu
(Zr) atoms in 150 CusoZrso MGs (each containing 32,000 atoms
and quenched at an effective cooling rate of 1 x 10'° K/s); the
purpose is to confirm that the models trained on those smaller
data sets are reliable and the ML model trained on this single
composition has similar power to that trained on the data set
composed of atoms from 9 various compositions. The compar-
ison confirmed that the ML model trained on this single compo-
sition can be transferred to other compositions in the same MG
system. For all regression tasks, the ratio of instance number in
training and testing data sets is 4:1. We used the natural loga-
rithm of vge,; as the target value in ML, i.e. y; = In(vp,:), which
is close to a normal distribution, as shown in Fig. S26b. This is
because the distribution of vg,,; is rather heterogeneous, see
the very long tail in Fig. S26a. To avoid high-bias or under-
fitting, we tuned carefully the hyperparameters in ML models,
including regularization parameters, sensitiveness of the loss
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function, tolerance of termination criterion, and both 7. and ¢ in
Eq. (5) used to compute input attributes (G(7¢)).

Calculation of participation fraction p in soft modes

The normal mode analysis of the glass was carried out by diago-
nalizing the dynamical matrix of the MG inherent structure
obtained using the conjugate-gradient (CG) method. The partic-
ipation fraction of atom i in eigenmode e, is defined by

.2 .
1 1 . . . .
pi= ‘?w , where ?m is the corresponding polarization vector

of atom i [83]. Here, p, was summed over a small fraction of
1% (same as that in Ref. [45]) of the lowest-frequency normal
modes and denoted as the participation fraction p; for atom i,
which measures the involvement in soft modes for that atom.

Energy barrier of thermally activated events

The local potential energy landscape (PEL) was explored using
ART nouveau [12,50,75,76]. For the local excitations, initial per-
turbations in ART were introduced by applying random displace-
ment on a central atoms and its nearest-neighbors. The
magnitude of the displacement was fixed at 0.5 A, while the
direction was randomly chosen. When the curvature of the PEL
was found to be <—0.01 eV/AZ?, the system was pushed towards
the saddle point using the Lanczos algorithm [84]. The saddle
point is considered to be found when the overall force of the
total system is below 0.05 eV/A. The corresponding activation
energy is thus the difference between the saddle point energy
and the initial state energy. For each central atom in each sam-
ple, 30 relaxation events were searched.

Calculation of the velocity auto-correlation function

The velocity auto-correlation function (VACF) describes the
correlation of atomic motions in the time evolution of a
system. This function is defined as [85]: P (t) = (Vi(r + ) - vi(t))/
(vi(t) - vi(t)), where v;(t) is the velocity of atom i, 7 is the time
origin, and the angular brackets represent the ensemble average.
For the samples each containing ~30,000 atoms, the same initial
configuration was assigned with 100 different initial velocity
fields to reduce thermal noise. For the large sample containing
1,024,000 atoms, we assigned 60 different initial velocity fields
to the same initial configurations to calculate VACF for the entire
sample and each group of atoms. As an example, Fig. S27 shows
the VACF at 50K of the whole CusoZrso MG (containing
1,024,000 atoms and quenched at effective cooling rate of
1 x 10" K/s).

Fictive temperature

The fictive temperature (Ty) was determined from the evolution
of volume with temperature during heating at a constant rate
of 1 x 10' K/s. The fictive temperature is the temperature where
the volume intersects the equilibrium liquid line when extrapo-
lated along the glass line [48]. Fig. S28 shows an example.

Calculation of local elastic moduli

Local moduli of MGs were evaluated at 50 K using the fluctuation
method as described in detail in Ref. [53]. For a canonical (NVT)
ensemble, the local moduli can be calculated as the sum of three
contributions, the fluctuation, kinetic contribution and the Born
term, respectively. To reduce the statistical error in our simulated

samples, the average local moduli were averaged over 20 differ-
ent thermal initialization.

Data availability
The data that support the findings of this study are available
from the corresponding author on request.
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