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A B S T R A C T

Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LiBs) is crucial for improving
battery management system design and ensuring device safety. However, achieving accurate long-term
predictions of aging trajectories is challenging due to error accumulation in multi-step ahead forecasts. This
study shows that considering future internal resistance (R), which is related to the aging process, and the
capacity regeneration phenomenon (CRP) that occurs during aging can help reduce error accumulation.
Specifically, we propose a hybrid method that incorporates future R and CRP to predict the aging trajectories
and RULs of LiBs. Experiment results demonstrate: (1) for the same charging/discharging policies and battery
types, the proposed method can accurately predict the aging trajectory and RUL using only the first 20 cycles’
data (approximately 5% of the complete data); (2) for different charging/discharging policies and battery
types, with transfer learning, the proposed method can predict the aging trajectory and RUL using the first 40
cycles’ data. These results demonstrate that the proposed model is both accurate in long-term prediction and
robust for estimating the aging trajectory and RUL across various datasets.
1. Introduction

Lithium-ion batteries (LiBs) are extensively utilized in various fields,
such as electric vehicles (EVs), consumer electronics, and aerospace
systems, due to their high energy density, low self-discharge rates,
and extended lifetimes [1–3]. However, the usage and storage of LiBs
lead to degradation, resulting in escalated maintenance costs, down-
time, and potential hazardous incidents. To ensure the efficiency and
safety of LiBs, the battery management system (BMS) holds practi-
cal significance. The BMS is a vital component that plays a crucial
role in the monitoring, control, and protection of LiBs throughout
their life cycle. As core functions of BMS, accurate state of health
(SOH) estimation and remaining useful life (RUL) prediction of LiBs
are essential for optimizing energy management and improving battery
safety [4].

SOH refers to the extent of battery aging and is often quantified by
the capacity fade and increase in internal resistance (R) [5]. RUL repre-
sents the number of cycles that a battery can undergo before reaching
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its end-of-life (EOL) threshold, which is typically defined when battery
capacity declines to 80% of its initial value [6]. As users pay more
attention to the future lifespan of LiBs, the accurate prediction of the
aging trajectory and RUL becomes of paramount concern.

1.1. Literature review and motivations

Aging trajectory prediction methods are utilized to estimate the
RULs of batteries by extrapolating their capacity or SOH degrada-
tion trajectories. In general, aging trajectory prediction methods in-
clude model-based methods, data-driven methods, and hybrid methods.
Model-based methods involve developing a physical model for aging
trajectory prediction based on various aging mechanisms of a battery,
such as the formation of solid electrolyte interphase (SEI) layer, loss
of the active materials, lithium plating, etc. [7]. Although aging tra-
jectory and RUL can be obtained through model-based methods, there
are too many parameters that require identification, and the partial
vailable online 17 February 2024
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differential and algebraic equations also results in a heavy computa-
tional burden [8].

Instead of modeling a physical model to simulate the complex and
nonlinear battery aging mechanisms, data-driven techniques such as
machine learning (ML) and deep learning (DL) offer an alternative
approach. These techniques learn battery aging behavior from histor-
ical aging trajectories or health-related features to construct future
aging trajectories. By analyzing the historical aging trajectories, Zhang
et al. [9] proposed a long short-term memory (LSTM) network to
learn the long-term dependencies among the capacities of LiBs. This
LSTM model was then employed for predicting future aging trajectories.
Similarly, Guo et al. [10] developed a relevance vector machine (RVM)-
based model and Ma et al. [11] utilized a convolutional neural network
(CNN) for capacity and RUL prediction, both relying on experimentally
measured capacity data. Another approach involves employing ML and
DL methods such as Gaussian process regression (GPR) [12], CNN [8,
13], and LSTM [14] to extract health-related features from cycling data.
These features are then utilized to estimate battery health and RUL.
Although these methods can achieve high accuracy with sufficient data,
they are limited by the lack of physical interpretability in the design
parameters and the sensitivity to noise and disturbances.

The hybrid methods involve the integration of multiple techniques
to leverage the strengths of different methods, thereby achieving higher
accuracy and robustness. The hybrid of dual data-driven methods and
the combination of model-based and data-driven methods are the main-
stream hybrid models for predicting the capacity and RUL of LiBs [14].
The hybrid of dual data-driven methods takes advantage of diverse
data-driven methods to enhance feature extraction ability and overall
performance. For instance, Zhao et al. [15] proposed a framework
utilizing both a broad learning system algorithm and LSTM for capacity
and RUL prediction. Ren et al. [16] extracted health-related features
using CNN and LSTM, and then predicted RULs of LiBs. Some advanced
methods, such as self-attention [17] and transformer models [18,19]
are combined with other ML and DL methods to predict RULs. The
combination of model-based and data-driven methods incorporates
the model-based techniques to enhance the physical meanings of the
data-driven methods and improve their robustness. For example, Hong
et al. [4] and Catelani et al. [20] integrated the filtering-based tech-
niques with data-driven methods for RUL predictions, ensuring the
optimized performance of the data-driven methods. To enhance the
generality of the data-driven model, Xu et al. [21] proposed a hybrid
method based on electrochemical models, enabling early predictions
using only 20% of the total data.

Although these methods have achieved promising prediction results,
error accumulation exists in the aging trajectory methods, impacting
the long-term prediction performance.

For real-world applications, it is challenging to obtain cycling data,
especially for metrics like SOH that require fully charged or discharged
states during normal use. Based on such limited data, the aforemen-
tioned aging trajectory prediction methods, which heavily rely on
historical data, may not be suitable for RUL prediction in practi-
cal scenarios. To overcome this limitation, aging trajectory prediction
methods need to be capable of predicting the aging trajectory starting
at the early cycle and making accurate long-term predictions. Nev-
ertheless, the accumulated errors in the multi-step ahead predictions
may cause the predicted outcome to deviate significantly from the
true aging process [10,22]. Consequently, researchers have developed
methods to enhance the long-term prediction ability of the aging tra-
jectory prediction method. For example, Lu et al. [23] and Jones
et al. [24] have found that considering future charging/discharging
policies in the aging trajectory prediction model can lead to improved
long-term prediction. However, obtaining precise future discharging
policies is difficult, as discharging policies during usage are often
changeable.

Moreover, the capacity regeneration phenomenon (CRP), which is
2

a common phenomenon in the real-world aging trajectory, is ignored
in the above aging trajectory prediction methods. In practical scenar-
ios, batteries experience a gradual capacity decline over time due to
repeated usage. However, during periods of rest, the electrochemi-
cal performance of the battery may temporarily recover, leading to
the occurrence of CRP [25]. Ignoring CRP in the long-term capacity
predictions can result in error accumulation and adversely affect the
accuracy of prediction results [26,27]. Therefore, accurately deter-
mining the capacity regeneration point holds significant importance
in aging trajectory prediction methods. Zhang et al. [27] utilized an
unscented particle filter-Wilcoxon algorithm, and Russell et al. [28]
proposed a composite Poisson process for CRP detection. Following CRP
detection, the CRP and global degradation are combined to improve
RUL prediction accuracy. Additionally, existing researches indicate a
strong correlation between CRP and the rest time (𝑡rest) of the bat-
tery, with CRP tending to occur after a rest period of more than
two hours [29,30]. Qin et al. [30] established a relationship between
𝑡rest and CRP using Gaussian processes to predict the global trend.

ui et al. [31] employed support vector regression (SVR) to predict
he regeneration amplitude based on 𝑡rest, followed by LSTM-based
rediction of the entire aging trajectory. Although considering CRP in
he modeling process can mitigate a portion of the error accumulation
ssociated with CRP, these methods still need an enhancement in
ong-term prediction ability.

These challenges motivate us to find practical physical features
elated to SOH that can improve the long-term prediction accuracy of
ging trajectory prediction methods. Additionally, the methods should
e transferable to meet the variable usage conditions of LiBs while still
etaining their long-term prediction capability.

.2. Contributions

To address the challenges mentioned above, it is crucial to reduce
rror accumulation. In this study, two physical enhancement features
re introduced to mitigate the error accumulation in the multi-step
head predictions. Firstly, the future features related to SOH are in-
orporated to correct predicted aging trajectories. Specifically, the use
f R is explored, since it is closely associated with the growth of
he SEI layer and side reactions leading to capacity decay [32]. By
ncorporating future R values into the model, the error accumulation
n SOH prediction can be partially corrected. Secondly, 𝑡rest is included
n the model as an input to detect CRP occurrences and predict the
egeneration amplitude. Considering 𝑡rest can further improve predic-
ion accuracy. Additionally, the pre-trained model can be fine-tuned
o ensure its transferability to different batteries while maintaining
ong-term prediction ability.

This paper proposes a transferable hybrid method to predict the
ong-term aging trajectories and RULs of LiBs with CRP. The main
ontributions of this work can be summarized as follows:

(1) To achieve long-term multi-step ahead SOH and RUL predic-
tions, the proposed hybrid method incorporates two physical
enhancement features. The proposed method utilizes not only
SOH as inputs but also includes future R and 𝑡rest as part of
the inputs to make accurate long-term predictions, as well as
CRP predictions. Incorporating R and 𝑡rest helps eliminate error
accumulation in the multi-step ahead prediction.

(2) The transfer learning strategy is utilized to apply the proposed
method to batteries tested under various operating conditions.
Specifically, the fine-tuning technique is employed to enhance
the transferability of the pre-trained model while maintaining
its long-term prediction ability.

(3) The proposed method is validated on three LiB degradation
datasets that cover different battery types and working condi-
tions. Validation results demonstrate that the proposed method
achieves high accuracy in the long-term aging trajectory predic-
tions using only the first 20 cycles’ data (approximately 5% of
the complete data) as inputs. Furthermore, the model demon-
strates high transferability in LiBs under various working condi-

tions and types.
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1.3. Article organization

The remainder of this paper is organized as follows. Section 2
presents the definitions and the battery dataset used in this study.
Section 3 discusses related algorithms and the proposed prediction
framework. The test results of the proposed method are presented in
Section 4, followed by a discussion in Section 5. Finally, we draw the
conclusions and future work in Section 6.

2. Datasets

2.1. The definitions

The SOH is a measure of a battery’s degradation, which can be de-
fined in various ways, such as battery capacity, R, or cycle number [33].
In this work, the capacity ratio is employed as the SOH metric, as
defined by Eq. (1):

SOH 𝑖 =
𝐶𝑖
𝐶0

× 100%, (1)

where 𝐶𝑖 represents the capacity of the battery in the 𝑖th cycle, Ah;
while 𝐶0 denotes the initial capacity of the battery, Ah. A battery’s EOL
is typically defined as the cycle number at which its SOH drops below
80%.

The RUL of batteries proposed in this work can be defined as the
number of remaining useful cycles in batteries at a specific cycle. RUL
in the 𝑖th cycle can be computed using Eq. (2):

UL𝑖 = 𝑁EOL −𝑁𝑖, (2)

here 𝑁EOL denotes the cycle number at which a battery is considered
o have reached its EOL. Additionally, 𝑁𝑖 represents the cycle number
f the 𝑖th cycle.

The rest time here is defined as the time LiBs are left to rest
efore the next charge cycle. Rest time has a significant impact on the
erformance and health of LiBs, affecting factors such as CRP and cycle
ife, which can be represented using Eq. (3):
rest
𝑖 = 𝑡Chgbeg

𝑖 − 𝑡Dchend
𝑖−1 , (3)

here 𝑡rest
𝑖 denotes the rest time of the 𝑖th cycle, h. 𝑡Chgbeg

𝑖 and 𝑡Dchend
𝑖−1

espectively represent the times at which the 𝑖th charge begins and the
i−1)th discharge ends, h.
R is an important parameter that reflects the battery’s aging per-

ormance and is related to the SOH. It is defined as the direct current
nternal resistance in the charging process, as shown in Eq. (4):

=
(𝑉2 − 𝑉1)

𝐼
, (4)

where 𝑉2 and 𝑉1 are the voltage values during charging at different
times, and 𝐼 represents the current value during the charging process.
𝑅𝑖 denotes the direct current internal resistance in the 𝑖th cycle, Ohm.
The relative change in R between two adjacent cycles of the battery is
defined by the expression 𝑅𝑖−𝑅𝑖−1

𝑅𝑖−1
, which provides an indicator of how

he battery’s R changes over cycles.

.2. Datasets of lithium-ion batteries

In this work, three cyclic test datasets of LiBs with different rated
apacities and manufacturing processes are utilized. Two of these
atasets, named Dataset CS and Dataset CX, were acquired from the
enter for Advanced Life Cycle Engineering (CALCE) at the University
f Maryland [34,35]. Both datasets were generated using the Arbin
attery tester at room temperature. The third dataset, named Dataset
NR18650, comprises Samsung INR18650-25R batteries tested on the
eware battery tester at room temperature.

During the testing process, the batteries in the three datasets were
harged following the constant-current constant-voltage (CCCV) charg-
3

ng policy, with a maximum voltage of 4.2 V and a cut-off current of
Table 1
Summary of the three datasets.

Dataset Battery Rated
capacity

CC/CV during
charge

Discharge
current

CS
CS35 1.1 Ah 0.5 C/50 mA 1 C
CS36 1.1 Ah 0.5 C/50 mA 1 C
CS37 1.1 Ah 0.5 C/50 mA 1 C

CX

CX34 1.35 Ah 0.5 C/50 mA 0.5 C
CX36 1.35 Ah 0.5 C/50 mA 0.5 C
CX37 1.35 Ah 0.5 C/50 mA 0.5 C
CX38 1.35 Ah 0.5 C/50 mA 0.5 C

INR18650

INR18650_1 2.5 Ah 4 C/50 mA 4 C
INR18650_2 2.5 Ah 4 C/50 mA 4 C
INR18650_3 2.5 Ah 4 C/50 mA 4 C
INR18650_4 2.5 Ah 4 C/50 mA 4 C

INR18650_5 2.5 Ah 1 C/50 mA 4 C
INR18650_6 2.5 Ah 1 C/50 mA 4 C

INR18650_7 2.5 Ah 4 C/50 mA 1 C
INR18650_8 2.5 Ah 4 C/50 mA 1 C

50 mA. Discharging was performed at a constant-current (CC) rate until
the battery reached its minimum voltage. Table 1 provides detailed in-
formation on the battery number, rated capacity, and charge/discharge
current for each dataset. Batteries in the Dataset INR18650 were
charged in fast charging/discharging policies and shelved with differ-
ent rest times and intervals. INR18650_1 and INR18650_2 underwent
repeated rest times and intervals, respectively. The remaining batteries
in this dataset followed specific fixed rest times (12 or 24 h) and
intervals (10, 20, or 40 cycles) during the whole aging process. The
details of the rest times and intervals of Dataset INR18650 are listed in
Supplementary Table S1.

Fig. 1 illustrates the SOH aging trajectories of three datasets. It
is worth noting that the SOH does not exhibit a steady decay during
the aging process. CRP exists during cycling, and 𝑡rest is related to the
CRP during this process [30,36]. Fig. 2 shows the impact of 𝑡rest and
SOH on the capacity regeneration amplitude (detailed in Supplemen-
tary Note 2). This figure demonstrates that larger 𝑡rest and SOH may
result in a greater capacity regeneration amplitude. This regeneration
phenomenon arises from the dissipation of reactants in the battery
during static states [15]. With increasing 𝑡rest and SOH, the amount of
reactant dissipation also rises, leading to a higher capacity recovery.
As a result, these datasets are well-suited for real-world trajectory
prediction techniques to accurately predict aging trajectories with CRP.

2.3. Experiment scenarios

To evaluate the proposed method in long-term predictions and the
transferability, four scenarios are selected as follows:

Scenario 1: The Dataset CS, Dataset CX, and four batteries
(INR18650_1-4) in Dataset INR18650 are selected to evaluate the
long-term prediction performance of the proposed method.

Scenario 2: Four batteries (INR18650_1-4) and the other two bat-
teries (INR18650_5, 6) in Dataset INR18650 are selected as Scenario 2
to evaluate model transferability on batteries with different charging
policies.

Scenario 3: Four batteries (INR18650_1-4) and the other two bat-
teries (INR18650_7, 8) in Dataset INR18650 are selected to evaluate
model transferability on batteries with different discharging policies.

Scenario 4: The Dataset CS and Dataset CX are used to evaluate
model transferability on batteries with different types.

3. Proposed method

This study proposes two models: the R prediction model and the
SOH trajectory prediction model. The R prediction model applies CNN
to forecast the R of LiBs. Meanwhile, the SOH trajectory prediction
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Fig. 1. The SOH aging trajectories. (a) Dataset CS. (b) Dataset CX. (c) Dataset INR18650.
Fig. 2. The impact of rest time and SOH on the capacity regeneration amplitude.

model combines CNN, dilated CNN, and LSTM to predict the aging
trajectories and RULs of LiBs. Specifically, CNN and dilated CNN are
employed to extract features from a sequence of cycling data, while
LSTM networks are utilized to learn the degradation mechanism of
these features over cycles. The extracted features from CNN, dilated
CNN, and LSTM are then processed through a fully connected (FC)
layer, which outputs the predicted SOH.

3.1. Related algorithms

3.1.1. CNN and dilated CNN algorithm
The main concept of CNN is to intelligently adapt to the properties

and extract features from input data by utilizing multiple filters [37].
In this paper, one-dimensional convolution in the time domain is em-
ployed to extract features from the input data. The convolution process
in each layer of the network can be represented as Eq. (5):

𝑍𝑙,𝑟
𝑛 = 𝑓 (𝐾 𝑙,𝑟 ⋅ 𝑂𝑙−1(𝑛) + 𝑏𝑙,𝑟), 𝑟 = 1, 2,… , 𝑘𝑙 , (5)

where 𝑂𝑙−1 represents the output of layer 𝑙−1, 𝑂𝑙−1(𝑛) denotes the nth
subvector of 𝑂𝑙−1, 𝑘𝑙 denotes the kernel number in the lth convolutional
layer, vector 𝐾 𝑙,𝑟 and 𝑏𝑙,𝑟 represent the weights and biases of the rth
kernel in the lth convolutional layer. The activation function 𝑓 (⋅) used
here is the rectified linear unit (ReLU) function. Additionally, 𝑍𝑙,𝑟

𝑛
denotes the nth subvector of the outputs of the lth convolutional layer
in the rth kernel.

To prevent overfitting and reduce the number of model parameters,
a max pooling technique is applied after two convolutional layers. This
operation can be expressed mathematically as Eq. (6):

MP𝑚 = max (𝑍2), (6)
4

[(𝑚−1)×𝑠+1]≤𝑖≤[𝑝+(𝑚−1)×𝑠] 𝑖
where s and p are the stride and pool size of the max pooling layer,
MP𝑚 denotes the mth subvector of outputs of the max pooling layer,
𝑍2

𝑖 is the 𝑖th subvector of the outputs of the 2nd convolutional layer.
The CNN block typically consists of several convolutional and max

pooling layers. However, pooling layers can lead to the loss of infor-
mation due to down-sampling. To address this issue, dilated CNN is
employed. This technique utilizes dilated convolution, which can apply
filters with different dilation rates and increase the area that the filter
covers [38,39]. The structures of CNN and dilated CNN are illustrated
in Supplementary Fig. S19.

Generally, the feature maps from the last layer are commonly
fed into an FC layer in CNN. Nonetheless, using this FC layer may
lead to overfitting and consequently decrease the network’s ability to
generalize [40]. To address these issues, the global average pooling
(GAP) layer is employed in place of the FC layer in both CNN and
dilated CNN blocks. The GAP mechanism calculates the mean value
of each feature map, thereby reducing the network’s parameters and
enhancing its generalization performance.

3.1.2. LSTM algorithm
The LSTM is a form of recurrent neural network (RNN) that ad-

dresses the vanishing gradient problem by utilizing memory cells and
gates to regulate the flow of information. This feature enables it to
effectively capture long-term dependencies in time series data [41,42].
The structure of LSTM is shown in Supplementary Fig. S20. The LSTM
layer includes three gates: the forget gate, the input gate, and the
output gate.

Forget gate. The forget gate decides how much information from
the previous moment is going to be thrown away. The forget gate is
described as Eq. (7):

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓 ), (7)

where 𝑓𝑡 represents the output of forget gate. It is a number between
0 and 1, where 1 signifies a fully retained state value, and 0 signifies a
fully forgotten state value. Additionally, ℎ𝑡−1 denotes the hidden state
at the previous moment 𝑡 − 1, 𝑋𝑡 is the input vector at time t. 𝑊𝑓 and
𝑏𝑓 are the weights and biases of the forget gate. Besides, ‘‘[]’’ is vector
concatenation, and 𝜎(⋅) represents the sigmoid activation function.

Input gate. The input gate determines what new information will
be updated, which can be expressed as Eqs. (8) and (9):

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖), (8)

𝐶̃𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐 ), (9)

where [𝑊𝑖, 𝑏𝑖] and [𝑊𝑐 , 𝑏𝑐 ] represent the input gate’s and candidate
vector’s weights and biases, respectively. 𝑖𝑡 signifies the output of
the input gate, 𝐶̃𝑡 denotes a vector of the candidate state at time t.
Additionally, tanh(⋅) refers to the tanh activation function.
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Then the previous state 𝐶𝑡−1 can be updated to the current state 𝐶𝑡
by combining Eqs. (7)–(9), as shown in Eq. (10):

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡. (10)

Output gate. The output gate determines the final output of LSTM.
he output gate can be implemented as Eqs. (11) and (12):

𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜), (11)

𝑡 = 𝑜𝑡 × tanh(𝐶𝑡), (12)

here 𝑊𝑜 and 𝑏𝑜 are the weights and biases of the output gate,
espectively. 𝑜𝑡 is the output of the output gate, and ℎ𝑡 is the final
utput.

.1.3. Proposed method based on transfer learning
Transfer learning is a powerful technique that enables the sharing

f learned knowledge between related tasks, thereby avoiding the need
o learn a new task from scratch. In the context of aging trajectory
rediction, transfer learning can be especially valuable as it allows
nformation from the source data to be leveraged by the target task,
educing the need for large amounts of training data [43].

However, predicting the aging trajectories of batteries tested under
ifferent conditions presents unique challenges, as the degradation
atterns may vary between batteries. To address this challenge, we
ropose a novel transfer learning method that can be applied to differ-
nt batteries, leveraging the long-term degradation patterns of the SOH
nd R values. Specifically, we only fine-tune the FC layers of the SOH
rajectory prediction model and the R prediction model. The transfer
earning approach is shown in Supplementary Fig. S21. By fine-tuning
nly the FC layers, the learned knowledge can be effectively transferred
rom the source domain to the target domain while avoiding overfitting
he specific characteristics of the source data, thus maintaining the
ong-term prediction ability.

.2. Framework

.2.1. The network architectures of two models
The network architectures of the two proposed models are shown in

ig. 3. The R prediction model utilizes a CNN block comprising multiple
NN layers to model the behavior of R changes. Depending on the
cenario, the input length of the R prediction model varies. Specifically,
n Scenarios 1–3 and Scenario 4, the input lengths are set to 20 and
0 cycles, respectively. The R prediction model can forecast future R
alues with a flexible length until the EOL is reached.

As illustrated in Fig. 3, the SOH trajectory prediction model con-
iders SOH 𝑖, 𝑡rest

𝑖+1 , 𝑅𝑖+1, and 𝑅𝑖+1−𝑅𝑖
𝑅𝑖

during 20 consecutive cycles as
inputs. The inclusion of 𝑅𝑖+1 and 𝑅𝑖+1−𝑅𝑖

𝑅𝑖
helps the model to capture

he changes from SOH 𝑖 to SOH 𝑖+1 and reduces the error accumula-
ion during long-term forecasting. Additionally, 𝑡rest

𝑖+1 is used to predict
hether CRP occurs in the (i+1)th cycle, allowing for CRP predictions.
he outputs of the GAP and LSTM layers are fed into a FC layer, which
redicts the SOH of the next cycle. During the transfer learning process,
nly the FC layers are fine-tuned.

.2.2. Implementation process
The process of implementing the RUL prediction method with all

lgorithms is illustrated in Fig. 4. It can be divided into the following
hree main parts. First, in offline training, the R prediction model and

the SOH trajectory prediction model are trained on the source dataset.
Then, the two models are fine-tuned to enhance their transferability to
batteries different from those in the source dataset in offline transfer
learning. At last, these two models are employed to forecast the future
aging trajectory and RUL of the target battery.
5

(1) Offline training. During the offline training process, the R pre-
diction model and SOH trajectory prediction model are trained
by minimizing the mean squared error (MSE) loss between
model outputs and targets on the training set. The R prediction
model uses the R values during the first M cycles as input and
predicts the future R until EOL. The cycle data of LiBs in the
training set are divided into numerous samples, where each
sample includes an input matrix of SOH 𝑖, 𝑡rest

𝑖+1 , 𝑅𝑖+1, and 𝑅𝑖+1−𝑅𝑖
𝑅𝑖

during 20 consecutive cycles, and a target matrix of SOH 𝑖+20.
Subsequently, the SOH trajectory prediction model is trained on
these samples.

(2) Offline transfer learning. For Scenario 1, transfer learning is
not used because the source dataset and the target battery have
the same charging/discharging policies and types. Scenarios 2
and 3 have the same battery type, but the charging/discharging
policies of the source dataset and target battery are different. In
this situation, transfer learning is required for the SOH trajectory
prediction model. For Scenario 4, the types of the source dataset
and target battery are different. Both the R prediction model and
SOH trajectory prediction model are transferred by fine-tuning
the model parameters. Specifically, the R prediction model is
fine-tuned on batteries of the same type as the target battery.
The SOH trajectory prediction model is fine-tuned using the first
40 cycles’ data from the target battery. The transfer learning
process for the SOH trajectory prediction model involves two
steps: first, a dataset containing 20 samples is created by using
a sliding window with a size of 20 and a step of 1 in the first
40 cycles’ data of the target battery. Second, the fine-tuning
process focuses solely on the MSE loss in this dataset and does
not validate the future trajectory of the target battery. Once
completed, the fine-tuned SOH trajectory prediction model can
be applied to the target battery. The detailed descriptions of the
transfer learning process of different scenarios with examples are
shown in Supplementary Note 4.

(3) Online deployment. Once the models are trained and fine-
tuned, they are ready for online deployment. Given the first
M cycles’ data of the target battery, the R prediction model
directly outputs the predicted future R values. These predicted
R values are then used as inputs for the SOH trajectory predic-
tion model, which generates multi-step SOH predictions with a
sliding window of 20 cycles until EOL is reached.

In Scenario 1, both the training and test batteries are selected from
the same dataset. In Scenarios 2 and 3, the training batteries consist
of INR18650_1–4, with INR18650_5, 6, and INR18650_7, 8 used as the
test batteries for Scenarios 2 and 3, respectively. For Scenario 4, the
proposed method is applied using Dataset CX as the training set and
Dataset CS as the test set. In Scenarios 1–3, the value of M is set to 20,
while for Scenario 4, M is set to 40.

3.2.3. Evaluation index
To evaluate the performance of the proposed method in RUL pre-

diction, two indexes are selected: (1) the RUL error, as described in
Eq. (13), which quantifies the discrepancy between the true RUL and
the predicted RUL; and (2) the accuracy metric (AM), as expressed in
Eq. (14), which assesses the accuracy of the models.

RULError = R̂UL − RUL, (13)

M = (1 −
|

|

RULError||
RUL ) × 100%, (14)

here RUL and R̂UL represent the actual RUL and the predicted RUL,
espectively. In these metrics, the larger AM is, and the smaller RULError

is, the higher the accuracy of the proposed model is.
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Fig. 3. The network architectures of the proposed two models. (a) R prediction model. In Scenarios 1–3, M is set to 20, while in Scenario 4, M is set to 40. (b) SOH trajectory
prediction model. The ̂ notation denotes the predicted value.
4. Estimation results

4.1. Experiment design

In this section, we verify the performance of the proposed method
for predicting RULs. In Section 4.2, the method is trained and evaluated
on three different datasets. Section 4.3 compares the proposed method
with a model that only uses SOHs as inputs to evaluate whether
including R and 𝑡rest improves the accuracy of the CRP estimate and the
long-term prediction performance. Subsequently, comprehensive tests
are carried out to assess the transferability of the proposed method
to batteries tested under different conditions. Batteries with different
charging/discharging policies and types are tested in Sections 4.4.1 and
4.4.2, respectively.

4.2. The prediction results of three datasets using the proposed method

The proposed method is used to estimate aging trajectories and
predict RUL using historical data from batteries in Scenario 1. In
this experiment, each battery was chosen as the test set, while the
remaining batteries in the dataset were used as the training set. The
degradation data of the batteries in the training set were used to train
6

the models. Subsequently, the first 20 cycles’ data of the test set were
used for SOH trajectory and RUL predictions. The prediction process
was terminated when the predicted SOH dropped below 80%, and the
predicted RUL was obtained at that point.

The R and SOH trajectory prediction results for batteries in Scenario
1 are presented in Fig. 5, Supplementary Fig. S5, and Supplementary
Fig. S6. From Fig. 5(a–c), Fig. S5(a–d), and Fig. S6(a–d), it can be
observed that the R prediction model performs well on test batteries.
The model can capture the R-related trends during the battery’s entire
lifespan because it can learn R-related features from the batteries in
the training set. Moreover, Fig. 5(d–f), Fig. S5(e–h), and Fig. S6(e–h)
show that the SOH trajectory estimations of the proposed method can
fit the real SOH curves well. Additionally, the SOH trajectory prediction
model can estimate the SOH value for over 300 cycles using only the
first 20 cycles’ data, indicating that considering R and 𝑡rest improves the
long-term prediction performance of the SOH trajectory. Table 2 lists
the numeric results, demonstrating that the proposed method can accu-
rately and robustly predict RUL with AMs larger than 95% in Dataset CS
and Dataset CX. For fast charging conditions, AMs of Dataset INR18650
are all larger than 92% based on the data from the first 6% of the whole
life. The AMs of Dataset INR18650 are smaller than those of Dataset CS
and Dataset CX, mainly because the batteries in Dataset INR18650 are
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Fig. 4. The implementation process of the proposed method. (a) Offline training process. (b) Offline transfer learning process. Scenario 1: same charging/discharging policies and
battery types; Scenarios 2–4: different charging/discharging policies or battery types. (c) Online deployment process. The ̂ means the predicted value.
tested in the laboratory, and the rest times and intervals are manually
set. The rest times and intervals of Dataset INR18650 shown in Table
S1 indicate that there exist two main problems: (1) the rest times and
intervals of each battery are different from the other batteries. (2) The
rest times and intervals are insufficient. Therefore, it is challenging for
the SOH trajectory prediction model to learn enough information from
the training set to ensure model generality on unseen rest times and
intervals. As a result, the proposed method does not perform well in
Dataset INR18650. Compared to Dataset INR18650, Dataset CS and CX
are more suitable to evaluate the model’s performance since the aging
trajectories in Dataset CS and CX are more realistic.

4.3. The prediction results using only SOHs as input

To further verify the accuracy of the proposed approach, we devel-
oped a model that only utilizes SOHs as inputs to predict the aging
trajectory of Dataset CS. The results of this model’s predictions are
presented in Fig. 6. The findings indicate that the model performs
well in the short term, but its performance significantly declines when
7

Table 2
RUL prediction results of the proposed method for Scenario 1.

Dataset Train on Test on RUL R̂UL Error AM

CS
CS36, 37 CS35 510 533 23 95.49%
CS35, 37 CS36 466 456 −10 97.85%
CS35, 36 CS37 534 518 −16 97.00%

CX

CX36, 37, 38 CX34 615 625 10 98.37%
CX34, 37, 38 CX36 614 607 −7 98.86%
CX34, 36, 38 CX37 629 614 −15 97.62%
CX34, 36, 37 CX38 602 604 2 99.67%

INR18650

INR18650_2, 3, 4 INR18650_1 245 262 17 93.06%
INR18650_1, 3, 4 INR18650_2 401 369 −32 92.02%
INR18650_1, 2, 4 INR18650_3 318 294 −24 92.45%
INR18650_1, 2, 3 INR18650_4 360 344 −16 95.56%

attempting long-term multi-step ahead predictions due to the existence
of the error accumulation [44]. For instance, when employing a SOH
trajectory prediction model that only relies on SOHs, the model’s
capability to forecast the SOH is limited to previous SOH values. As
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Fig. 5. R prediction (a–c) and SOH trajectory prediction (d–f) of CS35, CS36, CS37. The training set of each battery is the rest batteries in Dataset CS.
Fig. 6. SOH trajectory prediction using only SOHs as input. (a) CS35. (b) CS36 (c) CS37.
a result, if all SOHs in the sliding window are predicted values, the
estimated SOH in the next cycle may be influenced by prior forecast er-
rors, resulting in cumulative errors that considerably impair long-term
forecasts. By incorporating R and 𝑡rest, the proposed hybrid method can
achieve long-term forecasts of aging trajectory. R is correlated with
SOH and can eliminate part of the error accumulation, thereby leading
to more accurate SOH trajectory predictions. The inclusion of 𝑡rest helps
predict the CRP and enhances prediction accuracy.

4.4. Model transferability of the proposed method

In this section, the model transferability of the proposed method
is tested and discussed. As discussed in Section 4.3, the long-term
prediction is not accurate when only considering the SOHs, thus the
transferability of the aging trajectory prediction model using only SOHs
is not evaluated in this work.
8

4.4.1. Model transferability on batteries with different charging/discharging
policies

In this section, Scenarios 2 and 3, including batteries with different
charging/discharging policies, have been chosen to verify the ability of
the transfer learning method on such batteries. The fine-tuning process
is shown in Section 3.2.2.

The SOH trajectory prediction results demonstrate the effectiveness
of the proposed transfer learning method in correcting predicted SOH
trajectory values to measured values, as shown in Fig. 7 and Table 3.
Supplementary Fig. S8 shows that although the charging/discharging
policies differ, the R prediction model can still evaluate the R trends
well without fine-tuning. It indicates that the R patterns can be cap-
tured by the R prediction model on the same battery type since the
R trajectories in Scenario 2 and Scenario 3 are similar to Scenario 1.
As can be seen in Fig. S8, when the R trajectories are close to their
EOLs, the predictions are not particularly accurate, mainly because
the battery life in the training set is too short for the model to learn
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Fig. 7. SOH trajectory prediction results for batteries with different charging/discharging policies. (a) INR18650_5. (b) INR18650_6. (c) INR18650_7. (d) INR18650_8. The batteries
in the training set are INR18650_1-4.
Table 3
RUL prediction results of Scenario 2 and 3.

Train on Scenario Fine-tuning and test on RUL Fine-tuning R̂UL Error AM

INR18650_1-4

2
INR18650_5 649 No 579 −70 89.21%

Yes 635 −14 97.84%

INR18650_6 755 No 688 −67 91.13%
Yes 721 −34 95.50%

3
INR18650_7 403 No 441 38 90.57%

Yes 387 −16 96.03%

INR18650_8 354 No 444 90 74.58%
Yes 335 −19 94.63%
the R situation when the number of cycles is large. However, the
deep learning model can predict unknown conditions based on the
learned characteristics, indicating its potential for generalization and
prediction of R for unknown cycles. For Scenario 2, the INR18650_5
and INR18650_6 charge at a lower current rate and have lifetimes of
over 600 cycles, which are longer than INR18650_1-4. The proposed
method can still estimate the SOH trajectory well and make a relatively
high prediction accuracy of more than 90% AM without fine-tuning.
After fine-tuning, the AMs of the INR18650_5 and INR18650_6 increase
to more than 95%. In Scenario 3, the INR18650_7 and INR18650_8
discharge at a lower current rate than INR18650_1-4, and the aging
trajectory of INR18650_8 is completely different from that of other
batteries, which makes the prediction more difficult. After fine-tuning,
the prediction trajectory is closer to the measurements, highlighting the
advantage of the transfer learning method that can fit the pre-trained
model to the target battery, with the AMs of 96.03% and 94.63% for
INR18650_7 and INR18650_8.

4.4.2. Model transferability on different battery types
To ensure the applicability of the proposed method to batteries

with different types, both the R prediction model and SOH trajectory
9

prediction model undergo fine-tuning. The training set is Dataset CX,
while Dataset CS is used as test batteries to evaluate the performance
of the transfer learning. Detailed information about the fine-tuning
process is available in Section 3.2.2.

Supplementary Fig. S9 presents the predicted R of Dataset CS after
fine-tuning. The experiment results demonstrate that R can be accu-
rately predicted with the proposed transfer learning method, which
helps reduce error accumulation and enhances the accuracy of the
SOH trajectory prediction model. Consequently, the proposed method
achieves high prediction accuracy, even when the source and target
datasets have different battery types. Fig. 8 and Table 4 show the
comparison results between the RUL prediction method and the method
after fine-tuning. The experiment results exhibit that the pre-trained
model accurately predicts the RUL, with AMs of 86.73%, 99.33%, and
94.94% for CS35, CS36, and CS37, respectively. The transfer learning
method facilitates the fine-tuning of the pre-trained model on a new
dataset, making it more compatible with the new battery. During the
fine-tuning process, only the FC layers undergo retraining, implying
that only the mapping from latent representations to output is modified.
Furthermore, a small learning rate is utilized for fine-tuning the FC
layer, leading to a minor change in the learned mapping. Employing
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Fig. 8. SOH trajectory prediction results on different battery types. (a) CS35. (b) CS36. (c) CS37.
Table 4
RUL prediction results of Scenario 4.

Train on Fine-tuning
and test on

RUL Fine-tuning R̂UL Error AM

Dataset CX

CS35 490 No 555 65 86.73%
Yes 503 13 97.35%

CS36 446 No 449 3 99.33%
Yes 456 10 97.76%

CS37 514 No 488 −26 94.94%
Yes 489 −25 95.14%

this strategy, the predicted curve aligns better with the actual value,
resulting in improved RUL prediction accuracy with AMs larger than
95% for all three batteries. Although the accuracy of the transferred
RUL prediction method reduces slightly for CS36, the loss in accuracy
is not significant since only the FC layer was fine-tuned.

5. Discussion

The proposed method considers R and CRP in LiBs to make long-
term aging trajectory and RUL prediction. It has the following advan-
tages:

(1) High accuracy in long-term prediction. Due to the considera-
tion of the R and CRP, the proposed method can achieve accurate
long-term SOH trajectory and RUL prediction. In comparison
to existing aging trajectory prediction models, which typically
require more than 20% of the entire cycling data for training
and predicting, the proposed model can be utilized directly and
initiate predictions at the early stage of battery aging. Further-
more, the AMs of the prediction results are 96.78% for Dataset
CS, 98.63% for Dataset CX, and 93.27% for Dataset INR18650
in Scenario 1, demonstrating the long-term prediction ability of
the proposed method.

(2) CRP detection. The proposed hybrid method can predict the
CRP occurrence and the amplitude of capacity regeneration in
the aging trajectory predictions, making it a suitable method for
real-world application.

(3) Excellent transferability in LiBs with different conditions.
The transfer learning method is employed to make the proposed
approach suitable for LiBs tested under various conditions. When
the charging/discharging policies of the training set and test
set differ, the proposed method can still achieve high AMs of
96.67% and 95.33% by transfer learning for Scenarios 2 and 3,
respectively. Transfer learning also demonstrates its ability to
adapt the pre-trained model to batteries of different types with
the source data, achieving an AM of 96.75%.
10
(4) Real-time performance. We also performed experiments to
evaluate the real-time performance, i.e., estimation speed, of
our method. Normally, RUL estimation results can be obtained
within 10 s. This estimation speed may be sufficient for many
real-world applications of RUL prediction. For example, in the
situations of predictive maintenance and EVs’ BMS, an estima-
tion speed of 10 s is usually enough to meet practical require-
ments. However, for optimal charging/discharging management
and some mission-critical applications, a shorter estimation time
can lead to better results. A detailed discussion about the real-
time usage of our method is presented in Supplementary Note
11.

(5) Performance compared with previous relevant works.
Among relevant methods, both Ref. [23] and the proposed
hybrid method demonstrate the ability to achieve precise aging
trajectory predictions. The advanced early and long-term pre-
diction ability indicates that considering future health-related
features can effectively reduce error accumulation in long-term
forecasting. Additionally, compared to Ref. [23], the proposed
method can predict the CRP in the aging trajectory predictions,
which may be more suitable for practical usage. Although the
proposed method does not achieve the highest AM among pre-
vious works, the results demonstrate the power of the proposed
method in achieving a balance between long-term and accurate
predictions of the aging trajectory and RUL. A detailed discus-
sion about the comparison of the proposed method and other
relevant recent literature is presented in Supplementary Note 12.

The proposed method has the potential to be utilized as an early-
stage trajectory and RUL prediction technology in EVs for various
applications, owing to its long-term prediction ability. When the pro-
posed method is used in real applications, it may require the following
steps after model training. Firstly, the R prediction model can be
used to predict the future R based on the first 20 cycles’ R, which
can be easily obtained before the batteries are used in EVs. After
that, the SOH trajectory prediction model can be integrated into the
existing BMS to make multi-step ahead SOH predictions directly. These
predicted values can assist users in understanding the battery’s aging
performance. Moreover, the CRP can be calculated using the proposed
method. If users want to learn how the rest time value affects the capac-
ity regeneration value, the proposed method can predict the capacity
regeneration value following the set rest time. To reduce computational
burden and minimize the need for data on batteries under different
conditions, the pre-trained model can be applied to other types of LiBs
using transfer learning. In the transfer learning process, the R curves of
new battery types are relatively easy to obtain because manufacturers
usually conduct cycling tests to obtain the performance of new battery
types. Therefore, the proposed transfer learning process is practical.
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Although the proposed model shows high accuracy in long-term
SOH and RUL predictions, the datasets used in this work are obtained
from laboratory measurements, leading to a large discrepancy with
real-world battery data. For instance, the temperature, which is an
important influencing factor for LiBs, typically remains constant during
laboratory testing, while in real-world applications, the environmental
temperature can fluctuate sharply. Consequently, the proposed method
may require more training data to accommodate a wider range of
real-world situations and a wider range of battery types.

6. Conclusion and future work

This paper presents a transferable LiB aging trajectory prediction
method with long-term prediction ability. The proposed hybrid method
incorporates two physical enhancement features, R and 𝑡rest, to reduce
rror accumulation in long-term SOH forecasts and achieve accurate
ong-term SOH and RUL prediction. The experiment results demon-
trate that the prediction error is less than 5% for three different
atasets when using only the first 20 cycles (approximately 5% of the
ntire life data). Additionally, the proposed method can detect CRP
n the aging trajectory, making it suitable for practical applications.
oreover, the proposed method is transferable to different aging condi-

ions while still maintaining its long-term prediction ability. This work
ighlights the combination of future physical features with data-driven
ethods can improve the performance of early and accurate prediction

n the aging trajectory.
Future research should investigate the aging mechanism of LiBs in

eal-world conditions and apply the transfer learning method to a wider
ange of battery types to verify its feasibility and examine the impact
f temperature on SOH trajectory and RUL prediction.
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