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A B S T R A C T   

The intergranular degradation of seven different types of high-angle grain boundaries (HAGBs) were investigated 
on Alloy 600 after exposure to simulated pressurized water reactor primary water. All boundaries are susceptible 
to preferential intergranular oxidation (PIO) except for ideal coherent twin boundary. Diffusion induced grain 
boundary migration (DIGM) normally occurs and its depth is positively correlated with the PIO extent. Inter-
estingly, the PIO susceptibility is independent on the grain boundary misorientation angle or Σ value, but related 
to the grain boundary atom packing density (GBAPD). Grain boundaries with higher GBAPD values show higher 
PIO resistance as the element diffusion is slower.   

1. Introduction 

Nickel base Alloy 600 was widely used in pressurized water reactors 
(PWRs) owing to its high corrosion resistance and good mechanical 
properties [1]. However, stress corrosion cracking (SCC) has been 
frequently reported in Alloy 600 under both PWR service and laboratory 
test conditions [2–5]. Several models have been proposed to explain the 
intergranular stress corrosion cracking (IGSCC) phenomenon. Among 
them, selective internal oxidation mechanism appears to be the most 
comprehensive one and is gaining increasing acceptance [6–9]. The 
model was further improved by Bertali et al. [10] and adapted to pref-
erential intergranular oxidation (PIO) model. Under high temperature 
water or steam condition, O ingress occurs along the grain boundaries 
(GBs) and forms oxides with the less noble metals. Meanwhile, Cr and Fe 
diffuse outwards and induce grain boundary migration. The bonding 
strength of GB is significantly decreased and the oxidized boundary 
tends to crack under stress [9,11–14]. So PIO is an indispensable pre-
cursor event for IGSCC initiation. Kanzaki et al. [15] also found that the 
SCC susceptibility of Ni-Cr-Fe alloys under simulated PWR primary 
condition is closely related to the GB oxidation depth. Now increasing 
researches indicate that this PIO model also applies to the SCC of 
stainless steel [16–21] as well as irradiation assisted SCC [22–25]. 

It is well known that grain boundary structure plays an important 

role in intergranular oxidation behavior [26–30]. Based on the coinci-
dence site lattice (CSL) model, GBs can be classified into three types, 
low-angle grain boundaries (LAGBs, namely Σ1), low-Σ (3 ≤ Σ ≤ 29) CSL 
and random high-angle grain boundaries (RHABs). The low-angle and 
low-Σ GBs are generally regarded as ‘special’ ones due to their high 
resistance to intergranular degradation [1,31–34]. For instance, Lim 
et al. [30] found that Σ3 twin boundary of Alloy 600 is immune to 
oxidation and Σ9 boundary possess a higher oxidation resistance than 
RHAB after immersion test in simulated PWR primary water. More 
studies on other Ni-Cr-Fe alloys also suggest that twin boundaries have 
significantly higher resistance to intergranular oxidation than RHAB 
[28,35,36]. However, except coherent twin boundary (CTB), the other 
‘special’ GBs are still susceptible to penetrative oxidation. It has been 
reported that the LAGB of Alloy 600 can be oxidized in 340 ℃ primary 
water environment [37]. We have systematically studied the PIO 
behavior of LAGBs and found that all of them are susceptible to PIO, 
even when the misorientation angle is as low as 5.7◦ [38]. The Σ1 and Σ3 
GBs have earned much attention due to their high proportion and 
distinguished structure, while very few studies have been focused on 
other low-Σ CSL GBs. A better understanding of the effect of GB structure 
on PIO behavior is necessary for predicting the IGSCC performance and 
improving the IGSCC resistance by grain boundary engineering 
treatment. 
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The crystallographic structure of GBs can be fully determined by five 
degrees of freedom. Three of them describe the misorientation between 
the two grain matrixes, and the other two are used to determine the GB 
plane normal. However, CSL model only considers the misorientation 
angles between two adjacent grains, while the GB plane normal is not 
considered. As such, the CSL GBs were found to be not special in the 
intergranular cracking [1,34]. Therefore, the structure-performance 
correlation should be explored beyond the CSL concept. Now 
increasing results show that the GB plane play an important role in so-
lute diffusivity and oxidation kinetics. For instance, Kuang et al. [26,27] 
studied the intergranular degradation behavior of Alloy 690 (which 
contains twice the chromium content of Alloy 600) and found that the Cr 
diffusivity decreases in the order of RHABs, ITBs (incoherent twin 
boundaries) and CTBs. They also reported that Σ3 twin boundaries 
(include CTB, ITB and TTB (transformed twin boundary)) of Alloy 690 
show different oxidation susceptibilities even when they have a similar 
misorientation. The results indicate that the Cr diffusivity is related to 
the GB plane coherency. Minkwitz et al. [39] found the GB plane has a 
significant influence on GB diffusion along twin boundaries in copper. 
The GB diffusion coefficient increases with the GB plane deviating from 
{111} close-packed plane. Furthermore, An et al. [40] reported that the 
elemental diffusivity along high angle grain boundaries (HAGBs) de-
pends on the atom packing density (APD) of GB plane rather than the 
misorientation angle in 304L stainless steel. Boundaries with higher APD 
shows lower degree of intergranular degradation. More recently, we also 
found that the APD of GB has a strong effect on solute diffusivity and 
susceptibility to PIO of LAGB in Alloy 600 [38]. However, the key 
structure parameters affecting the solute diffusivity and oxidation ki-
netics are still unclear in HAGBs, especially low-Σ CSL GBs (e.g. Σ5, Σ7, 
Σ9 and Σ11). 

In this paper, we studied the influence of GB structure on the solute 
diffusivity and PIO susceptibility of HAGBs (including Σ3, Σ5, Σ7, Σ9, 
Σ11 and RHAB) in Alloy 600 after exposure to simulated PWR primary 
water. The full GB structure parameters (misorientation and GB plane 
orientation) were characterized. Subsequently, the microstructure and 
elemental composition of intergranular oxides and the extent of Cr 
diffusion were examined. The aim of this study was to understand: 1) the 
relationship between PIO and solute diffusivity in HAGBs, 2) the key 
structure parameters that dominate solute diffusion and oxidation 
kinetics. 

2. Experimental 

2.1. Material 

The chemical composition of used Alloy 600 is 75.1 % Ni, 15.6 % Cr, 

7.92 % Fe, 0.46 % Mn, 0.03 % Mo, 0.011 % Co, 0.22 % Si, 0.0023 % B, 
0.002 % S, 0.0092 % P and 0.01 % C (in wt.%). The as-received sample 
block was solution annealed at 1100 ℃ for 1 h and then quenched in 
water. After that, square coupons with the dimensions of 10 mm × 10 
mm × 2 mm were cut from the block. The sample surface was pro-
gressively ground to 4000 grit and then electropolished for 30 s at 30 V 
in 10 % (volume fraction) perchloric acid in methanol at − 30 ℃ to 
obtain a strain-free surface. Finally, the specimen was cleaned imme-
diately with methanol and acetone. 

2.2. Apparatus and methodology 

Prior to exposure in the autoclave, the grain boundary structure was 
recorded by electron backscatter diffraction (EBSD) system in a TESCAN 
MIRA3 FEG scanning electron microscope (SEM). EBSD test was per-
formed at 20 kV and 5.5 nA with a step size of 4 µm. The crystallographic 
data was analyzed using TSL OIM software. Here, the Brandon criterion 
was applied to define the CSL GB types. The grain boundary distribution 
and their length fractions are shown in Fig. 1. 

Oxidation tests were conducted in 19 MPa, 350 ℃ water which 
contains 19.7 cm3 (STP) H2/kg H2O (amounts to 1.8 ppm which is near 
the Ni/NiO boundary) in a refreshed stainless steel autoclave. 2 ppm Li 
was added into the water as LiOH and 1000 ppm B was added as boric 
acid. After exposure for 1270 h, the oxidized specimens were taken out 
for further characterization. 

Seven different types of HAGBs, including Σ3 (coherent and inco-
herent twin boundaries), Σ5, Σ7, Σ9, Σ11 and RHAB, were sampled and 
investigated in this work. Cross section lamellas of twelve HAGBs (be-
longs to seven different types) were prepared using focus ion beam (FIB) 
milling on a FEI Helios Nanolab 600. The lamella were lift out, and 
gradually milled to ~ 90 nm thick with a final beam current of 47 pA at 
5 kV. The oxide structure was analyzed with a JEOL JEM-2100F trans-
mission electron microscope (TEM). Element distribution was analyzed 
with a Thermo-Fisher Talos F200X scanning transmission electron mi-
croscope (STEM) which is equipped with a high angle annular dark-field 
(HAADF) detector and a “Super X” X-ray energy dispersive spectroscopy 
(EDS) system consisting of four Silicon Drift Detectors. EDS mappings 
were acquired at 512 × 512 pixels for 30 min and line scans were 
extracted from the mappings. 

3. Results 

Here, 12 HAGBs were sampled to analyze the effect of grain 
boundary structure on the intergranular oxidation behavior of Alloy 
600. Except for misorientation, GB plane indexes of all the sampled 
boundaries were also obtained using a new FIB-EBSD method developed 

Fig. 1. (a) Grain boundary distribution, (b) the frequency of different types of grain boundaries. The insert shows the typically oxidized surface after oxidation test.  
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in this group [41]. The accuracy of this technique is better than 3◦. To 
study the microstructure of GB oxidation, all GBs were tilted to edge-on 
condition in microscope. Table 1 summarizes the grain boundary 
structure parameters and the extent of intergranular degradation in this 
study. It should be noted that the measurements of PIO and 
diffusion-induced grain boundary migration (DIGM) were based on 2D 
images. 3D imaging technique such as serial FIB/SEM [42] would be a 
better option if the resource is available. According to the GB oxidation 
behavior, those boundaries can be divided into three categories. 

3.1. CTB 

Fig. 2a shows a bright field image of the cross section of a CTB (Σ3-1). 
The selected area diffraction pattern (SADP) in Fig. 2b shows that the GB 
trace is parallel to the common (111) plane when the zone axis is tilted 
to <110> direction. The FIB-EBSD method was applied on the twin 
boundary and the GB plane normals can be calculated, as shown in 
Fig. 2c. The (1 − 1 1)~3.59◦ //(− 1 1 1)~2.80◦ GB plane normals confirm 
that the twin boundary is a CTB. Fig. 2d shows a STEM-HAADF image of 
this boundary. The corresponding EDS mapping of O in Fig. 2e indicates 
that this GB was not oxidized. The EDS line scan (Fig. 2f) taken along the 
corresponding arrow in Fig. 2d further confirms that the boundary is 
immune to oxidation. It should be noted that the oxygen concentration 
from EDS measurement is semi-quantitative. 

3.2. ITB and Σ9 boundary 

Fig. 3a shows the BF image of an ITB (ITB-1). The SADP from this 
boundary shows the <110> zone axis of the right grain is parallel to the 
<114> zone axis of the left grain. The GB trace is straight but not par-
allel to the common [220]* direction, indicating that this twin boundary 
is incoherent. Subsequently, the GB plane normals were calculated to be 
(1 − 1 1)~1.74◦ //(− 1 5 1)~1.73◦, as shown in Fig. 3b, confirming that 
this boundary is an ITB. Fig. 3c shows the STEM-HAADF image of this 
boundary. Different from CTB, this GB was oxidized. The PIO depth was 
measured to be 546 nm. The EDS maps of O, Ni, Cr, and Fe show that the 
thin intergranular oxide was Cr-rich oxide and there is no apparent 
variation in chemical composition beyond the oxide tip. Two quantita-
tive EDS line profiles were extracted across the oxidized GB and the 
oxide front, as shown in Fig. 3h and i. From Fig. 3h, the intergranular 
oxide is depleted in Ni and Fe while enriched in Cr and O. However, the 
EDS line profile beyond the oxide tip shows that there is no significant 
variation in chemical composition near GB compared to the adjacent 
matrix (Fig. 3i). 

Fig. 4a shows the STEM-HAADF image of Σ9 (Σ9-1) boundary which 
has a misorientation angle/axis of 38.57◦/[− 1 0 1]. The GB plane 
normals of this boundary were determined to be (1 − 5 1)~2.14◦//(1 − 1 
1)~2.66◦ (Fig. 4b) which is the same as the above ITB. From Fig. 4a, the 
intergranular oxide penetration follows the GB and the PIO depth is 

around 285 nm. The EDS maps (Fig. 4c–g) show that the intergranular 
oxide is also Cr-enriched. In addition, there is a Cr and Fe-depleted but 
Ni-enriched region beyond the oxide tip. The EDS line profile across the 
intergranular oxide indicates that the oxide is depleted in Ni and Fe but 
slightly enriched in Cr (Fig. 4h). Moreover, the Cr-rich oxide is next to 
the left (111) GB plane normal. The EDS line profile across the boundary 
beyond the oxide tip shows depletion of Cr and Fe and enrichment of Ni 
(Fig. 4i). The length of Cr-depleted GB region was measured to be 
36 nm. Compared with ITB-1, the Σ9-1 boundary shows apparent faster 
Cr diffusivity. The element composition changes gradually from the 
matrix to boundary and the width of Cr-depleted region is less than 
5 nm. Thus, the limited Cr diffusivity could not induce GB migration. 
Similar oxidation behavior has been found in LAGB with misorientation 
below 8.8◦ [38]. 

3.3. Σ5 and Σ7 boundary 

Fig. 5a shows the STEM-HAADF image of Σ5 (Σ5-1) boundary with a 
misorientation angle/axis of 37.38◦/[0 4 1]. The GB plane indexes were 
determined to be (5 − 5 7)~2.93◦//(7 5 3)~1.38◦, as shown in the crys-
tallographic unit triangle (Fig. 5b). As confirmed by the EDS map of O 
(inset in Fig. 5a), the PIO depth is 1048 nm, which is much deeper than 
those in ITB and Σ9 GB. Fig. 5c shows the enlarged image of oxidation 
tip. The boundary beyond the intergranular oxide is brighter than 
adjacent matrix, indicating Ni is enriched therein. From the EDS maps, 
the bright area corresponds to the Cr, Fe-depleted but Ni-enriched DIGM 
zone, which has been widely observed in Alloy 600 [10,38,43,44] and 
Alloy 690 [26,45,46]. Due to its higher average Z number, the migration 
zone appears brighter than matrix in HAADF. Different from ITB and 
Σ9–1, the formation of DIGM zone suggests that this GB can support 
rapid diffusion of Cr and Fe. The original and migrated GBs were 
denoted by white arrows, and the migrated direction was indicated by a 
yellow arrow in Fig. 5e. From Fig. 5d–g, PIO developed preferentially 
along the new migrated GB. Moreover, the intergranular oxide is 
Cr-enriched, which is confirmed by EDS line profile along arrow h in 
Fig. 5c. Fig. 5i shows the quantitative chemical changes along arrow i 
which is across the migration zone in Fig. 5c. From the profile, the Ni 
element is up to 85 at.%, while Cr and Fe are 7 at.% and 6 at.%, 
respectively. From the EDS maps in Fig. 5c–g, the DIGM zone extends to 
345 nm long. 

The under-focus bright field image of Σ7 boundary shows some 
facets along this boundary, as indicated by the yellow arrows in Fig. 6a. 
From the STEM-HAADF image, the boundary shows serious oxidation 
and the oxidation depth extends to 900 nm (Fig. 6b). This boundary has 
a misorientation angle/axis of 41.50◦/[− 1 1 1] and the “average” GB 
plane indexes can be described as (− 6 7 − 4)~1.47◦//(3 − 3 − 2)~2.35◦, 
as shown in Fig. 6c. From the oxidized GB (Fig. 6b), the intergranular 
oxidation exhibits non-uniform width. The EDS maps from rectangle 
region in Fig. 6b show that the distribution of alloying elements in 

Table 1 
Summary of the high-angle grain boundary crystallographic orientation and the extent of intergranular degradation. Grain boundaries were extracted and analyzed 
from 7 different types of HAGB.  

Sample GB Misorientation 
angle/Axis 

GB plane combination GBAPD DIGM 
depth (nm) 

Oxidation depth (nm) 

1 Σ3-1 59.67◦/[− 1 1 1] (1 − 1 1)~3.59◦//(− 1 1 1)~2.80◦ 0.905 None 0 
2 Σ3-2 59.52◦/[− 1 1 1] (1 − 1 − 1)~6.19◦//(− 1 1 − 1)~7.36◦ 0.897 None 194 
3 Σ3-3 59.94◦/[1 1 − 1] (1 − 1 1)~1.74◦//(− 1 5 1)~1.73◦ 0.823 None 546 
4 Σ3-4 59.90◦/[− 1 1 − 1] (1 1 1)~2.82◦//(− 1 1 5)~2.87◦ 0.823 None 635 
5 Σ5-1 37.38◦/[0 4 1] (5 − 5 7)~2.93◦//(7 5 3)~1.38◦ 0.842 345 1048 
6 Σ5-2 35.47◦/[0 4 1] (5 − 1 3)~1.58◦//(3 8 3)~1.09◦ 0.724 652 1384 
7 Σ7 41.50◦/[− 1 1 1] (− 6 7 − 4)~1.47◦//(3 − 3 − 2)~2.35◦ 0.873 782 900 
8 Σ9-1 38.57◦/[− 1 0 1] (1 − 5 1)~2.14◦//(1 − 1 1)~2.66◦ 0.830 None 285 
9 Σ9-2 38.89◦/[0 − 1 − 1] (− 3 − 1 − 1)~2.84◦//(− 1 − 1 0)~3.80◦ 0.686 468 1015 
10 Σ11 50.28◦/[1 0 1] (− 5 2 8)~2.93◦//(− 1 3 0)~2.44◦ 0.746 396 462 
11 RHAB-1 48.67◦/[− 3 − 2 − 1] (8 − 5 − 2)~2.65◦//(− 1 − 1 0)~3.25◦ 0.678 1097 1737 
12 RHAB-2 35.68◦/[− 3 − 2 − 1] (− 6 6 1)~2.80◦//(5 − 8 − 2)~1.84◦ 0.690 None 670  
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intergranular oxides is also not uniform (Fig. 6d–g). The oxide near the 
left grain is Ni and Fe-enriched, while the oxide close to the right grain is 
Cr-enriched, as indicated in overlapped elemental maps (Fig. 6h and i). 
The EDS line profile also confirms this asymmetric element distribution 
in intergranular oxide (Fig. 6j). Tsai et al. [47] also reported the faceted 
characteristics of Σ7 boundaries in the intergranular corrosion test of 
316 stainless steel. 

Fig. 7a shows the enlarged image from the oxidation tip in Fig. 6b. 
From the EDS maps of O, Ni, Cr and Fe, the oxide mainly contains Cr and 
O (Fig. 7b–e) which is mixed with Ni rich flake. There is a noticeable 
wide and bright area beneath the intergranular oxide (Fig. 7a). From the 
EDS maps, the bright area corresponds to the DIGM zone. The large 
DIGM zone suggests that this boundary can support rapid Cr diffusion 
during oxidation. The migrated GB, original GB and PIO were denoted 
by white arrows, and the migration direction was indicated by a yellow 
arrow in Fig. 7c. To examine the microchemistry of oxidation tip, two 
EDS line profiles along arrow f and g were taken (Fig. 7a). Fig. 7f shows 
that the intergranular oxide is Cr-enriched and contains a Ni-enriched 
flake. Similar feature has been observed in LAGB of Alloy 600 [38]. 
The EDS line profile across the DIGM zone shows that the region is 
significantly enriched in Ni and depleted in Cr. The element profile is 
fairly constant across the region and the depth of DIGM zone was 
measured to be 782 nm. 

For Σ7 boundary, the phase structure of intergranular oxide was 
analyzed in TEM. Fig. 8a shows the under-focus bright field image. The 
diffraction pattern from the circled area in Fig. 8a is shown in Fig. 8b 
with the left substrate tilted to [110] zone axis. The indexed results of 
diffraction pattern were shown in Fig. 8c. The dark field images of the 
oxide taken from the numbered spots in Fig. 8c are shown in Fig. 8d-f. 
The result shows that the intergranular oxide is composed of spinel, NiO 
and corundum structure oxides. The spinel and NiO has a cube-on-cube 

relationship with the matrix, and corundum has a rigid orientation 
relationship with the matrix as reported in [45,46,48]: Cr2O3 
{006}//substrate {111}, Cr2O3 <210>//substrate <110>. 

4. Discussion 

The intergranular degradation results show that the degree of PIO 
and solute diffusivity are quite different among the sampled GBs. In 
order to determine the dependence of PIO tendency on GB structure, the 
structures of sampled GBs were fully characterized. In this paper, the 
whole GB structure parameters, including misorientation angle and GB 
plane normal, have been determined based on the surface EBSD data and 
GB trace angles using the technique developed before [41]. As the 
calculated GB plane normal are not necessarily integer, the plane index 
was represented by the closest integer and the deviation. 

The atom packing density (APD) was calculated from the GB plane 
index as it may be directly related to the performance of GB. The APD of 
GB plane is defined by the ratio of atom occupied area to the corre-
sponding plane area and its value reflects how dense an arbitrary plane 
is packed [49]. A Monte Carlo method was employed to calculate the 
APD value of GB plane. The calculation principle has been described in 
detail by Wang [49]. In general, a large number of dots were uniformly 
projected onto the target crystal plane in a face-centered cubic (FCC) 
unit cell. The number of dots within the atom-occupied area was 
counted and the ratio of this number to the total dot number is the APD 
value of target plane. The grain boundary atom packing density 
(GBAPD), which can be expressed as the average of the APD values of 
the two coupling GB planes, is used here. Boundaries with low GBAPD 
values tend to have less atoms on two GB planes, so less bonds would be 
made between two adjacent GB planes and the disordered boundaries 
offer more space for solute atom and oxygen transport [40,49]. 

Fig. 2. The oxidation behavior of CTB-1. (a, b) Bright field (BF) image and selected area diffraction pattern (SADP) of CTB-1, (c) the calculated GB plane orientations, 
where left and right GB planes are labeled by red and blue dots respectively, (d, e) HADDF image and EDS mapping of O, (f) EDS line profile along arrow f in (d). 
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4.1. Dependence of PIO on GB type 

PIO is an important precursor event in the SCC initiation process [13, 
14,46,50–52] and DIGM is closely related to PIO [10,43,44,53]. In our 
previous work [38], it was found that GBAPD plays a more important 
role in GB degradation behavior than misorientation angle for LAGB 
with misorientation angle larger than 8.8◦. Whether this conclusion 
apply to HAGB should be further verified. 

Table 1 summarizes the GB structure parameters and the extent of 

intergranular degradation in this study. All HAGBs were oxidized except 
for the ideal CTB (CTB-1). This CTB behaves completely differently from 
other HAGBs. There is no signs of long-range diffusion of Cr and the 
oxygen ingress was completely suppressed in CTB-1 (Fig. 2). The im-
munity of CTB to intergranular degradation behavior is mainly due to 
the highly-ordered boundary structure. Consistent results have also been 
reported by Lim et al. [30]. 

It should be noted that another CTB that deviates from perfect co-
herency (CTB-2) was oxidized (Table 1). Thus, when the GB coherency is 

Fig. 3. The oxidation behavior of ITB-1. (a) Bright field (BF) image and selected area diffraction pattern (SADP) of ITB-1, (b) the GB plane orientation distribution, 
where left and right GB planes are respectively labeled by red and blue dots, (c–g) HADDF image and associated EDS mapping of O, Ni, Cr and Fe, (h and i) EDS line 
profiles along arrow h and i in (c). 
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compromised, oxygen ingress occurs along the boundary which leads to 
slight oxidation on CTB-2. As the GB coherency further decreases in ITB, 
the oxygen diffusivity was enhanced and the PIO was further accelerated 
(Fig. 3). There is almost no sign of Cr depletion beyond the intergranular 
oxide tip in CTB-2 as well as in the other two ITBs, indicating that Cr is 
nearly immobile along twin boundaries (including CTB and ITB) at this 
temperature. The oxidation behavior of those twin boundaries is similar 
to that of LAGBs with misorientation angle smaller than 8.8◦ [38]. Σ9-1 

boundary exhibits a similar oxidation behavior as ITB (Fig. 4). The PIO is 
shallow and there is no sign of GB migration although a short 
Cr-depleted region formed beyond the oxide tip, indicating very limited 
Cr diffusion along GB. Overall, the above GBs show no or limited Cr 
diffusion and are subject to mild intergranular oxidation except that 
ideal CTB is immune to oxidation. 

The rest GBs are more susceptible to intergranular oxidation. A 
typical feature of these GBs is that they could support fast Cr diffusion 

Fig. 4. The oxidation behavior of Σ9-1. (a) HADDF image of Σ9-1, (b) the GB plane orientation distribution, where left and right GB planes are respectively labeled 
by red and blue dots, (c–f) HADDF image and associated EDS mapping of O, Ni, Cr, Fe and (g) overlap mapping of Ni and Cr, (h and i) EDS line profiles along arrow h 
and i in (a). 
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Fig. 5. The oxidation behavior of Σ5-1. (a) HADDF image and EDS mapping of O, (b) the GB plane orientation distribution, where left and right GB planes are 
respectively labeled by red and blue dots, (c) enlarged image of the oxidation tip, (d–g) EDS mapping of O, Ni, Cr and Fe, (h, i) EDS line profiles along arrow h and i 
in (c). 
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and DIGM occurred in Σ5 (Fig. 5) and Σ7 (Fig. 7). DIGM has been widely 
reported in Alloy 600 after exposure in simulated PWR primary water 
[38,51,53] and high temperature steam [10,43,44,50]. The depth of 
DIGM zone can be used to reflect the diffusivity of solute atom (such as 
Cr) along GB. Our previous work suggests that the depths of PIO and 
DIGM zone are positively correlated for LAGB with misorientation angle 
larger than 8.8◦ [38]. Fig. 9 shows the relationship between PIO and 
DIGM depths for the sampled HAGBs. The data from LAGBs [38] was 
also included. Some HAGB (sample 12 in Table 1) was oxidized even in 
the absence of DIGM. So DIGM is not essential for the occurrence of PIO. 
Nevertheless, the PIO depth generally increases with increasing DIGM 
depth. Given that PIO is dictated by oxygen ingress and DIGM is 
controlled by Cr diffusion, it seems that the diffusivities of solute atom 
and oxygen along a single boundary are positively correlated in this 
alloy. 

Fig. 10a and b show the variations of DIGM depth over misorienta-
tion angle and Σ value. The random distribution of dots suggests that the 

solute diffusivity is not directly related to either misorientation angle or 
Σ value for HAGB. For instance, the two Σ9 boundaries exhibit 
completely different solute diffusivities, even though they have the same 
misorientation angle/axis and Σ value. The two Σ5 boundaries also 
behave quite differently. Similarly, there is no clear relationship be-
tween PIO extent and misorientation angle or Σ value, suggesting that 
the susceptibility to PIO is independent on misorientation angle or Σ 
value (Fig. 10c and d). Fujii et al. [54,55] studied the relationship be-
tween intergranular corrosion (IGC) susceptibility and Σ value and also 
demonstrated that the IGC area did not depend on the Σ value. More 
importantly, one RHAB even shows much shallower PIO depth than 
some CSL GBs (Fig. 9). Therefore, the resistance to PIO of GB probably 
can’t be reflected from the GB classification based on CSL concept. 

4.2. Effect of GB plane on PIO 

The solute diffusivity along the boundary and the intergranular 

Fig. 6. The oxidation behavior of Σ7. (a) Under-focus TEM image of Σ7, (b) STEM-HAADF image, (c) the GB plane orientation distribution, where left and right GB 
planes are respectively labeled by red and blue dots, (d–g) EDS mapping of O, Ni, Cr and Fe, (h, i) overlap mapping of (Cr, Ni) and (Fe, Ni), (j) EDS line profile along 
arrow j in (b). 
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oxidation process should be dictated by some factors other than 
misorientation angle or CSL Σ value. Recently, Kuang and Was [26] and 
Minkwitz et al. [39] found that the solute diffusivity along Σ3 boundary 
was strongly affected by the density of coincident site in grain boundary 
plane. However, the key factors that dictate properties of other HAGB 
are still unknown. Our recent work [38] indicates that GB plane orien-
tation plays an important role on solute diffusivity and intergranular 
degradation in LAGB when the misorientation angle is above 8.8◦. 
Whether the GB plane also plays a dominant role on solute diffusivity 
and PIO process in HAGBs needs to be further verified. 

Previous work shows that the GB plane orientation has a strong effect 
on GB properties such as GB diffusion [26,39], migration [56], inter-
granular corrosion [40,47], segregation and fracture [57–59]. The GB 
with low-index plane tends to exhibit greater degradation resistance. 
Moreover, some model was proposed to explain the GB degradation 
behavior [49,60,61]. Miyamoto et al. [61] studied the role of grain 
boundary plane orientation on intergranular corrosion and reported that 
there is an inverse linear relation between the susceptibility to inter-
granular corrosion and “effective interplanar spacing”. However, this 
parameter cannot directly reflect the atomic structure of a specific grain 
boundary. Recently, GBAPD theory was applied to explain the inter-
granular corrosion phenomenon in an AISI 304L stainless steel. An and 
Zaefferer [40] found that the crystallographic orientation of GB plane is 
a dominant factor in the corrosion behavior of low-Σ CSL GBs and 

RHABs. 
Fig. 11a shows the distribution of PIO depth with the GB plane 

combinations within the orientation triangle (The background color of 
orientation triangle represents the APD of the corresponding GB plane, 
and the color of circles represents the PIO depth). From Fig. 11a, the PIO 
depth increases as the APD of GB plane decreases. It is noticed that the 
GBs comprising one (1 1 1) plane such as two ITB and Σ9–1 shows a 
higher oxidation resistance than other boundaries. That is probably 
because those boundaries have higher GBAPD and less space [40] and 
lower GB energies [62] hinder solute atom and oxygen diffusion along 
GBs. As the GB plane deviates from the (1 1 1) orientation, the solute 
diffusivity increases. Given that the spinel oxide cannot prevent further 
oxidation of the grain boundaries below (Fig. 8), the PIO susceptibility 
was enhanced. Particularly, the Σ7 boundary shows a high PIO suscep-
tibility although it has a high GBAPD, suggesting some factors other than 
GB plane orientation also affect the solute diffusivity. The unusual 
behavior of Σ7 might be due to its facet character caused by the strong 
GB energy anisotropy [47]. Some previous studies used the grain 
boundary serration (GBS) to explain GB faceting in Ni-based alloy 
[63–65] and stainless steel [66]. The GBS theory suggests that the for-
mation of serrated GB is to reduce the total GB energy. The GBs with 
higher energy tend to be serrated and form specific lower-energy seg-
ments [64,66]. The faceted GB changes GB plane orientation, hence the 
GBAPD value is not constant along the GB. An [40] and Tsai [47] had 

Fig. 7. (a) HADDF image of oxidation tip of Σ7, (b–e) EDS mapping of O, Ni, Cr and Fe, (f and g) EDS line profiles along arrow f and g in (a).  
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also found the unusual behavior of Σ7 boundary, and Tsai further 
indicated that the stronger GB energy anisotropy (instead of absolute 
energies) is the main reason for the formation of GB facet. The Σ7 
boundary tends to facet into (111) low-indexed plane on at least one side 
of GB, resulting in faceted GB with higher GBAPD. However, some 
high-indexed planes also formed during faceting process and support 
fast diffusion of solute atom along GB. Therefore, the faceted GB exhibits 
high oxidation susceptibility even when its GBAPD is high. 

Fig. 11b shows the correlation between PIO depth and GBAPD. The 
PIO depth exhibits a decreasing trend with increasing GBAPD. 

Moreover, the oxidation susceptibility of the same type of GBs decreases 
with the increase of GBAPD, such as Σ3, Σ5, Σ9 and RHAB. This trend 
confirms that GB plane orientation is a key factor affecting intergranular 
oxidation process. Hanson et al. [59] found the GBs with low-index 
planes, such as {001}, {011} or {111}, show a striking high resistance 
to hydrogen-assisted crack propagation. Hu et al. [57] reported that the 
coupling GB planes affect the S adsorption and then determine the sulfur 
embrittlement of nickel. Despite the relationship between GB plane 
orientation and degradation properties was reported, a deeper insight 
into those correlations is still lacking. The present results suggest that 
the GBAPD affects the intergranular oxidation behavior through con-
trolling the solute diffusivity, and finally determines the oxidation ki-
netics. Consistent result has also been found in the oxidation behavior of 
LAGB of Alloy 600 [38]. Based on broken-bond model [67,68], the GBs 
can be considered as a combination of two GB planes. GBs with higher 
GBAPD tend to form more coordination bonds between the two GB 
planes. The formation of bonds between the two adjacent GB planes 
hinders the diffusion of solute atoms and oxygen along GBs. Moreover, 
extensive work suggests that the GB energy tends to decrease as the APD 
of GB plane increases [62,69–71]. Therefore, the GB plane is the key 
factor for intergranular degradation behavior of Alloy 600 in high 
temperature water. The present work confirms that GBAPD theory ap-
plies to relatively straight boundaries although it cannot precisely reflect 
the atomic packing density for faceted or curved boundaries due to their 
changed GB plane orientation. 

5. Conclusions 

The present study investigated the intergranular oxidation behaviors 

Fig. 8. TEM micrograph of inner and intergranular oxide of Σ7, (b) diffraction pattern of circled area in (a), (c) the indexed results of diffraction pattern in (b), (d–f) 
dark field (DF) images corresponding to spots 1–3 in (c). 

Fig. 9. The relationship between PIO depth and DIGM depth.  
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of different types of HAGBs of Alloy 600 exposed to simulated PWR 
primary water. The microstructural and microchemical features of 
oxidized GBs were studied and correlated with the detailed GB structure. 
Effects of grain boundary structures on solute diffusivity and inter-
granular oxidation behavior of HAGBs were analyzed and the following 
conclusions can be drawn:  

1. Regardless of the Σ value, all the sampled grain boundaries were 
preferentially oxidized except ideal CTB. DIGM normally occurs 
beyond PIO in HAGBs, but it is not a necessary step for PIO.  

2. The GB structure greatly affects the PIO kinetics via controlling the 
element diffusivity. For Alloy 600, the PIO depth is positively 
correlated with the DIGM depth, indicating that the transportation 

Fig. 10. the changes of DIGM depth and PIO depth as function of misorientation and GB type.  

Fig. 11. (a) The distribution of PIO depth with the GB plane orientation. The background color of stereographic projection indicates the atom packing density (APD) 
of the GB planes. Each solid circle representing plane normal orientation and GB plane pairs belonging to the same GB are denoted by the same number. The colors of 
solid circles represent the depth of PIO. (b) PIO depth as function of the APD of GB. 
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rates of oxygen and solute atoms along GB are similarly dependent 
on GB structure.  

3. Compared with misorientation angle and Σ value, GBAPD is a more 
important factor in the intergranular degradation behavior of Alloy 
600. GB with higher GBAPD tends to be oxidized at a slower rate as 
the element diffusion is slower. 
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