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ABSTRACT
Themechanical properties of anMg–Zn–Ca alloy were significantly improved through extrusion
deformation. High-density spheroidal Ca2Mg6Zn3 with a diameter ranging from 10 to 50 nm
dynamically precipitated during extrusion deformation. The microstructure of the as-extruded
alloywas obviously refined comparedwith that of the as-cast counterpart. A bimodalmicrostruc-
ture consisting of coarsely deformedgrains and finely recrystallised grainswas obtained through
extrusion. Additionally, the as-extruded alloy exhibited a strong basal texture. Consequently, the
yield strength increased from 42 MPa of the as-cast alloy to 285 MPa of the as-extruded alloy.
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Introduction

Mg alloys are desirable candidates in fields requiring
light weight because of their low density and high
specific strength [1,2]. However, Mg alloys with low
strength compared with their competitive Al alloys
strongly restrict their applications. Hence, it is nec-
essary to optimise the microstructure to enhance the
mechanical properties of Mg alloys [3].

The mechanical properties of Mg alloys can be
enhanced via the addition of a large concentration
of alloying elements [4,5] and the thermomechanical
process [6, 7]. A tensile yield strength of 360 MPa
was achieved for an Mg–8.8Sn–4.0Zn–0.9Al–0.3Na
(wt-%) alloy after extrusion and aging treatment [8],
while an Mg–5.5Al–3Ca–0.3Mn (wt-%) alloy with
a yield strength of 402 MPa was obtained through
extrusion deformation [9]. However, an Mg alloy
with high concentrations of alloying elements forms
a coarse second phase and deteriorates the forma-
bility of Mg alloys. Therefore, solution treatment is
commonly adopted to reduce the amounts of sec-
ond phase in Mg alloys before deformation [10].
For example, an Mg–7.50Al–1.07Ca–0.17Mn (wt-%)
alloy was solutionised at high temperature, which
promoted the dissolution of the second phase and
improved the room temperature stretch formability
[10]. Recently, dilute Mg alloys with small amounts of
alloying elements were proposed because of their supe-
rior formability and mechanical properties [11–15].
For instance, an Mg–0.31Al–0.3Ca–0.8Mn (wt-%)
alloy could be extruded at a high die-exit speed of

60mmin−1 without surface cracks [15], and a dilute
Mg–0.21Zn–0.30Ca–0.14Mn (wt-%) alloy showed a
tensile yield strength of 307 MPa after extrusion [16].
Therefore, low-alloyed Mg alloys might be an effective
path for the future [10].

Mg–Zn–Ca-based alloys are suggested to be a
promising Mg alloys series because of low price
[17] and high biocompatibility. Previous investigations
focused onMg–Zn–Ca alloys with high amounts of Zn
to improve strength through the generation of high-
density precipitates during deformation [18,19]. For
example, Mg–6Zn–0.8Ca (wt-%) with an ultimate ten-
sile strength (UTS) greater than 300 MPa had been
developed through extrusion deformation [20,21]. It
should be noted that high Zn content in Mg–Zn–Ca
alloys reduced the plasticity and increased the suscepti-
bility of hot tearing [22]. Hence, reducing Zn content in
Mg–Zn–Ca alloys was required to satisfy the manufac-
turing demands. Mg–1Zn–xCa alloys exhibited an ulti-
mate strength less than 250 MPa [23] because an effec-
tive strengthening phase was not introduced when Zn
contentwas low.Additionally, Ca is commonly added in
limited amounts inMg alloys becauseCa shows low sol-
ubility inMg and higher concentrations of Ca in theMg
alloy would form a stable second phase and deteriorate
the formability.

Based on the above observations, an Mg–Zn–Ca
alloy with about 2 wt-% Zn and about 0.1 wt-% Ca was
fabricated and extruded in the present study, to achieve
balanced strength and ductility of the Mg–Zn–Ca
alloy.
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Experimental procedure

Commercial high-purityMg (99.9%,mass fraction), Zn
(99.9%) and Mg–15%Ca master alloys were melted at
750°C in an electric resistance furnace under a mixed
atmosphere of CO2 and SF6. The melts were held at
750°C for 10 min to ensure a homogeneous mixture.
Then the temperature was decreased to 720°C and held
for 10 min. After that, the melts were poured into a
steel mould, which was preheated to 200°C. The alloy
composition was analysed using an inductively coupled
plasma (ICP) analyzer, and the result was shown to be
Mg–1.876Zn–0.112Ca (wt-%). The casting ingots were
cut into a rod with a diameter of 60 mm and a height
of 40 mm. Then the rods were homogenised at 400°C
for 10 h. After that, extrusion was conducted at 350°C
with an extrusion ratio of 16 and an extrusion speed of
about 10 mmmin−1. The extruded profile was cooled
to ambient temperature in air.

The specimens for optical microscopy (OM) and
scanning electron microscope (SEM) observation were
firstmechanically ground and polished and then etched
using acetic picral. The phase constituents of the as-cast
sample were determined by X-ray diffraction. The sam-
ples for electron backscatter diffraction (EBSD) obser-
vation were electro-polished in a solution of 62.5%
ethanol and 37.5% orthophosphoric acid with an elec-
tric current of 0.1–0.5A for 10–60 s at a temperature less
than 20°C. EBSD was conducted on a Quanta 200 FEG
device equipped with an EBSD detector. The obtained
orientation data were recalculated to acquire pole fig-
ureswith theMTEX5.5.1 toolbox [24]. TEMspecimens
were ion-milled to perforation at an ion accelerating
voltage of 3 kV. Microstructure characterisation was
carried out on a Tecnai G2 F30 transmission electron
microscope (TEM).

The as-extruded alloys were machined into a gauge
length of 15 mm and cross-sectional area of 6 mm ×
2 mm. Tensile tests were conducted using an Instron
5569 universal test machine at a crosshead speed of
1 mmmin−1 at ambient temperature. At least three
samples were measured to ensure reproducibility.

Results

Figure 1 shows the dendritic microstructure of the
as-cast alloy (Figure 1(a)). The backscattered electron
(BSE) image of the as-cast alloy is shown in Figure 1(b).
It could be clearly seen that the second phase with
bright contrast was mainly distributed between den-
drites. Additionally, the boundaries between dendrites
with bright contrast could be observed, indicating
that Zn or Ca elements were distributed inhomoge-
neously around the Mg matrix. EDS results of the
second phase in Figure 1(b) demonstrated Mg, Ca
and Zn concentrations. Previous investigations sug-
gested that the second phases in Mg–Zn–Ca alloys

are Mg2Ca and Ca2Mg6Zn3 [25]. The type of sec-
ond phase was determined by the atomic ratio of Zn
and Ca in Mg–Zn–Ca alloys [26], where Ca2Mg6Zn3
was the predominant phase when the value of Zn/Ca
was greater than 1.23 [26]. The atomic ratio of Zn
and Ca in Mg–1.88Zn–0.13Ca (wt-%) was about 8.9.
Hence, it was inferred that the second phase should be
Ca2Mg6Zn3. Figure 1(d) presents the XRD patterns of
the as-cast alloy. It could be seen that the peaks corre-
sponding to the Ca2Mg6Zn3 phase with low intensity
appeared along with the Mg peaks. The low intensity
of the Ca2Mg6Zn3 peaks indicated that the amounts of
Ca2Mg6Zn3 were small.

To further confirm the second phase in the as-cast
alloy, selected area electron diffraction (SAED) was
conducted, which is shown in Figure 2. The diffraction
pattern could be index by Ca2Mg6Zn3, which con-
firmed that the second phase in the as-cast alloy was
Ca2Mg6Zn3.

Figure 3 shows the microstructure of the as-
homogenised and as-extruded samples. It could be seen
that the as-homogenised sample exhibited a coarse
microstructure with dendritic morphology. Almost no
second phase was detected in the as-homogenised
alloy (Figure 3(a)), indicating that the second phase
was dissolved into the matrix during homogenisa-
tion. After extrusion, the microstructure obviously
changed. A bimodal microstructure consisting of
coarsely deformed grains and finely directly recrys-
tallised grains (DRGs) were observed (Figure 3(a)).
The volume fraction of the DRG was estimated to
be about 63%, and the size of DRG was about 2
μm. The microstructure of the as-extruded sample
(Figure 3(b)) was much finer than that of the as-cast
sample (Figure 3(a)).

Figure 4 shows the SEM images of the as-extruded
alloy. Some tiny spheroidal precipitates were observed
at the grain boundary and grain interior, which sug-
gested that dynamic precipitation occurred during
extrusion.

Figure 5 shows the TEM images of the as-extruded
alloy. High-density dislocation and spheroidal pre-
cipitates in the deformed grains (Figure 5(a)) were
detected. Fine precipitates with diameters ranging from
20 to 50 nm were distributed at grain boundaries and
grain interiors (Figure 5(b)). To further confirm the
type of precipitates in the as-extruded alloy, a high-
resolution TEM (HRTEM) image of the precipitate
is presented in Figure 5(c). The corresponding fast
Fourier transform (FFT) of the precipitate is shown in
Figure 5(d), which was indexed by Ca2Mg6Zn3. It indi-
cated that the dynamically spheroidal precipitates in the
present alloy were Ca2Mg6Zn3.

Figure 6 shows the EBSD maps of the as-extruded
alloy, and the corresponding pole figures of the as-
extruded alloy were presented. DRGs and deformed
recrystallised grains were clearly observed. However,
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Figure 1. (a) optical and (b) BSE image of the as-cast alloy, (c) EDS of the second phase arrowed in b, (d) XRD patterns of the as-cast
alloy.

Figure 2. (a) Bright-field TEM image and (b) corresponding selected area electron diffraction pattern of the second phase A.

the orientations represented by colour obviously dif-
fered. The deformed grains with green colour sug-
gested the <11–20> oriented grains, while the
DRGs exhibited different colours, indicating more ran-
dom orientations (Figure 6(a)). A strong basal tex-
ture with basal planes oriented towards extrusion

direction was obtained for the as-extruded alloy
(Figure 6(b)), which was usually observed for wrought
Mg alloys [27]. This strong texture is an important
factor causing increased strength of the as-extruded
Mg–Zn–Ca alloy, which will be discussed in the
following.
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Figure 3. Optical images of the (a) as-homogenised and (b) as-extruded alloy.

Figure 4. SEM images of the as-extruded alloy with (a) low and high magnifications.

Figure 7 shows the typical stress–strain curves of
the Mg–Zn–Ca alloy. It could be seen that the yield
strength (YS), UTS and elongation of the as-cast alloy
were 42± 2MPa, 135± 1MPa, 6.1± 0.2%, respectively.
After homogenisation, the yield strength was simi-
lar to that of the as-cast alloy, but the elongation
was increased to 8.2± 0.2%. For the as-extruded sam-
ple, the YS was increased to 285± 3 MPa, the UTS
was increased to 304± 3 MPa and the elongation was
increased to 9.1± 1.0%. This suggested that extrusion
deformation enhanced the strength and ductility of the
Mg–Zn–Ca alloy simultaneously.

Discussion

Extrusion effectively refined the microstructure, pro-
moted dynamic precipitation of Mg–Zn–Ca alloy and
enhanced the mechanical properties. The microstruc-
ture evolution and strengthening mechanism are dis-
cussed in the following.

Microstructure evolution ofMg–Zn–Ca alloy
during extrusion

At the initial stage of extrusion, the initial grain was
elongated along the extrusion direction accompanied
with grain boundaries along the extrusion direction.
Recrystallised grains preferentially nucleated at grain

boundaries. With the deformation proceeding, the
recrystallised regionwas increasedwhile the region fur-
ther from the grain boundaries remained as deformed
grains. Consequently, a microstructure with finely
recrystallised grains and deformed grains was alterna-
tively distributed. Accompanying the dynamic recrys-
tallisation, dynamic precipitation also occurred. The
initial Ca2Mg6Zn3 phase in the as-cast alloy was dis-
solved into the matrix during homogenisation treat-
ment (Figure 3(a)), which resulted in the supersatu-
ration of Zn and Ca in Mg matrix. During extrusion,
Ca and Zn tend to precipitate outside of the matrix.
Additionally, extrusion resulted in increased disloca-
tion, which could further promote dynamic precipi-
tation. On the other hand, the low mixture entropy
between Zn and Ca [28] was beneficial for the forma-
tion of Ca–Zn clusters [29], which had been detected
in the Mg–Zn–Ca alloy [28]. These Ca–Zn clusters
induce nucleation of the precipitate. Consequently, the
as-extruded Mg–Zn–Ca alloy exhibited densely fine
precipitates.

Figure 8 presents the microstructural evolution of
the Mg–Zn–Ca alloy during hot extrusion. The as-
homogenised alloy exhibited a coarse microstructure
(Figure 8(a)). At the initial deformation, the initial
grains were deformed and elongated along the extru-
sion direction. Grain boundaries were the preferen-
tial sites for recrystallised nucleation (Figure 8(b)),
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Figure 5. TEM bright filed (BF) images in (a) deformed grains and (b) directly recrystallised grains; (c) HRTEM image of precipitate
and (d) corresponding FFT of the spherical precipitate.

Figure 6. (a) EBSD map and corresponding (b) pole figures.
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Figure 7. Typical stress–strain curves for the Mg–1.88Zn–
0.13Ca (wt-%) alloy measured at ambient temperature.

which resulted in the formation of finely recrystallised
grains. Additionally, fine Ca2Mg6Zn3 precipitates were
dynamically precipitated at the matrix because of the
supersaturated Zn and Ca in Mg matrix. With fur-
ther deformation, the initial grains were further elon-
gated along the extrusion direction, and Ca2Mg6Zn3
at grain boundaries prohibited the growth of recrys-
tallised grains and that at the deformed grains hin-
dered dislocation mobility. Consequently, the region
away from the grain boundaries contained high-density
dislocation.

Strengtheningmechanism

Balanced mechanical property with a yield strength of
285 MPa and elongation of 9.1% were obtained for
the as-extruded Mg–Zn–Ca alloy (Figure 7). Extrusion
deformation effectively improves the mechanical prop-
erties of Mg–Zn–Ca alloy. The as-extruded alloy con-
tained finely recrystallised grains, coarsely deformed
grains with high-density dislocation, fine precipitates
and strong basal texture. Hence, the improvedmechan-
ical properties of the as-extruded alloy are attributed to
grain boundary strengthening in recrystallised grains
and precipitate strengthening and texture strengthen-
ing in both regions.

The Hall–Petch relationship �σ gb = kd−1/2, where
k is the slope and d is the grain size, was commonly

employed to explain the grain boundary strengthen-
ing. The value of k = 217 MPa μm1/2 was previously
reported for Mg–Zn-based alloys [30]. The average
grain size for the DRG of the as-extruded sample was
about 2 μm (Figure 3), which is much smaller than that
of the as-cast and as-homogenised samples although it
is difficult to accurately estimate the grain size of the
as-cast and homogenised samples. Therefore, the con-
tribution of grain size of DRG to strengthwas estimated
to be about 153 MPa.

The dense Ca2Mg6Zn3 phase and strong basal tex-
ture of the as-extruded Mg–Zn–Ca alloy are the other
important factors causing the increased strength. The
fine precipitates at grain boundaries and grain inte-
rior could inhibit the movement of dislocations dur-
ing tensile deformation. The enhanced strength due to
precipitates was determined by the size and spacing
of the precipitates according to Orawan–Ashby theory
[31]. The average diameter of the precipitates in the as-
extruded Mg–Zn–Ca alloy was about 30 nm and the
spacing was about 80 nm (Figure 4). Then the incre-
mental shear strength for the activation of basal slip
could be inferred to be about 54 MPa. Owing to the
basal texture formed after extrusion, the Schmid fac-
tor for the (0001) < 11–20> slip system significantly
decreased along the extrusion direction [32]. Conse-
quently, a higher strength should be applied to acti-
vate the basal slip system, i.e. high yield strength was
obtained. Therefore, the obvious enhancement of the
Mg–Zn–Ca alloy after extrusion is attributed to grain
refinement, high-density precipitates and strong basal
texture.

Conclusions

The microstructural evolution and mechanical proper-
ties of anMg–Zn–Ca alloy during extrusionwere inves-
tigated in the present study. The following conclusions
are summarised as follows.

(1) A bimodal microstructure consisting of finely
recrystallised grains and coarsely deformed grains
was obtained for the as-extruded alloy.

(2) Extrusion promoted the dynamic precipitation
of fine Ca2Mg6Zn3, part of which distributing

Figure 8. The schematic diagram of the microstructure evolution during extrusion of the Mg–Zn–Ca alloy.
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at grain boundaries effectively restricted grain
growth and part hindered dynamic recrystallisa-
tion.

(3) Extrusion enhanced the mechanical properties
of the Mg–Zn–Ca alloy. The yield strength was
increased from 42 MPa of the as-cast alloy to 285
MPa of the as-extruded alloy.

(4) The significant improvement of mechanical prop-
erties is related to the fine microstructure, high-
density precipitates and strong texture.
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