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ABSTRACT

Internal resonance between different vibration modes in micromechanical devices has been widely studied due to its promising application
prospects in microelectromechanical systems (MEMS) resonators and oscillators. In this paper, we investigated the 2:1 internal resonance
between the extensional and flexural modes in a micromechanical cantilever beam resonator using open and closed loop testing methods. In
the open loop test, energy transfer from the extensional mode to the flexural mode induced by internal resonance is directly observed.
Amplitude saturation and internal resonance bandwidth change in the extensional mode are experimentally studied and theoretically
verified with numerical simulation. In the closed loop system, internal resonance produces a bistable self-oscillation frequency. The oscilla-
tion frequency of the extensional mode will be locked to one of the two peaks induced by internal resonance. In addition, obvious improve-
ment in short-term frequency stability of the closed loop system is observed with the help of internal resonance. The dynamic
characteristics studied in this research can be potentially used to enhance the performance of MEMS vibration devices by internal
resonance.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115028

I. INTRODUCTION

Microelectromechanical systems (MEMS) resonators and
oscillators have drawn considerable attention due to their potential
alternatives to quartz crystals in sensing, timing, frequency control,
and other applications. Compared to quartz crystals, MEMS reso-
nators and oscillators have shown significant advantages including
low cost, small size, low power consumption, and integrability with
CMOS processing.1 Nonlinear mode coupling between different
vibration modes, which is frequently observed in MEMS vibrating
structure, has been studied for their potential to improve the per-
formance of resonators and oscillators.2–4 For instance, this mecha-
nism can be used to adjust the nonlinear stiffness3 or tune the
resonance frequency2 of a specific mode by controlling another
vibration mode.

If the resonance frequencies of the coupled vibration modes
satisfy an integer relationship, an extremely strong energy transfer
will take place, leading to internal resonance.5 The undriven

vibration mode can draw energy from the directly driven mode and
start to vibrate at a frequency which has an integer relationship
with the vibrating frequency of the directly driven mode. Internal
resonance can cause complicated dynamic phenomena and has
been widely studied in recent years for its numerous potential
applications.6 A series of experimental investigations on internal
resonance in MEMS vibrating devices have been proposed. The fre-
quency ratio between the directly driven mode and internal reso-
nance response mode can be 1:1,7–9 1:2,7,10 1:3,11,12 2:1,13–18

3:1,16,19 and even 23:1.20 Some extraordinary nonlinear dynamic
characteristics induced by internal resonance have been studied:
van der Avoort et al. studied the 2:1 internal resonance in a beam
resonator and observed amplitude saturation in a higher frequency
bulk mode.13 Internal resonance in structures like the clamped-
clamped beam (1:3),11 H-shaped structure (2:1),15 and square plate
(23:1)20 can also lead to amplitude saturation results. Antonio et al.
tested a clamped-clamped beam resonator and observed frequency
stability improvement by 1:3 internal resonance.11 Similar
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frequency stabilization phenomenon is also found in an arch beam
resonator with a frequency ratio of 2:1 and 3:1.21 It is believed that
internal resonance has promising application prospects in MEMS
resonators and oscillators.

Here, an investigation on the 2:1 internal resonance between
the extensional and flexural modes in a micromechanical cantilever
beam resonator is presented in this study. Open loop and closed
loop tests of the internal resonance system are carried out. This
paper is organized as follows: Sec. II describes a mathematical
model of the 2:1 internal resonance system. Numerical simulation
results of the open loop frequency response are shown in this
section. Section III is devoted to picturing the micromechanical
beam resonator design and the experimental testing method uti-
lized in this study. The experimental results of the open loop and
closed loop tests are shown in Sec. IV. In the open loop test, the
extensional mode is directly driven by a frequency sweep signal.
The frequency response of the extensional mode as well as the fre-
quency spectrum of the flexural mode are measured to compare
with the numerical simulation results in Sec. II. Then, in the closed
loop test, the extensional mode is made to generate self-oscillations
by a feedback control circuit. Self-oscillation frequency change and
short-term frequency stability of the extensional mode are experi-
mentally investigated with and without the existence of internal
resonance.

II. RESONATOR MODELING

The extensional and flexural modes in a cantilever beam reso-
nator are investigated in this paper. The beam resonator is sche-
matically shown in Fig. 1. A stretching and a bending deformation
in the cantilever beam correspond to the extensional and flexural
vibration modes, respectively. The movement directions of the two
modes are shown in red and blue arrows.

The system is modeled as two linear resonators coupled
through quadratic nonlinear coefficients.13,22 A set of equations of
motion is shown as follows:

m1€pþm1ω
2
1p ¼ �d1 p

2 � c1 _p� Fcos(ωt), (1)

m2€qþm2ω
2
2q ¼ �d2pq� c2 _q, (2)

where m1 and m2 are equivalent mass of the extensional and
flexural mode; p and q represent displacement of two vibration
modes, respectively; ω1 is resonance angular frequency of the

extensional mode; ω2 corresponds to the flexural mode; d1 and d2
are nonlinear coupling terms; c1 and c2 are model damping; F is
driving force; and ω is driving angular frequency. The driving force
is directly applied to the extensional mode, while the flexural mode
is left undriven. The resonance frequency ratio of the extensional
and the flexural mode is 2:1. A numerical simulation is operated
based on the equations of motion using the Runge-Kutta method
with the MATLAB ode45 function.

In numerical simulation, the frequency response of two modes
is simulated by calculating their amplitude after the system reaches
a steady state under certain driving conditions. The frequency
response of the mode coupled system under different driving levels
is shown in Figs. 2(a) and 2(b), corresponding to the extensional
and flexural mode, respectively. The frequency response of the
extensional mode shows a single resonance peak in a low driving
force condition. Meanwhile, the flexural mode does not have any
response, indicating that no energy exchange is observed when the
driving force stays at a small value. A downward peak in the
middle with two sharp upward peaks on both sides appears after
the driving force exceeds a certain level, making the frequency
response curve of the extensional mode look like a capital letter
M. This unusual downward peak indicates that there exists energy
leakage in the extensional mode. Meanwhile, the flexural mode
shows a significant response as the driving frequency sweeps within
the frequency range of the downward peak. The two upward peaks
on both sides of the downward peak define an internal resonance
bandwidth. This bandwidth marks the range in which the driving
condition meets the internal resonance requirement. It should be
noticed that the width of the internal resonance bandwidth is
affected by the driving force, and the amplitude of the extensional
mode at the downward peak almost stays constant. The amplitude
of the extensional mode at this point as well as the internal reso-
nance bandwidth are figured out as a function of the driving force.
The results are shown in Fig. 2(c). The extensional mode shows an
amplitude saturation (AS) phenomenon at the downward peak fre-
quency after internal resonance occurs. The flexural mode draws
extra energy to maintain this saturation in the extensional mode.
Besides, the internal resonance bandwidth grows as the driving
force increases, indicating that a stronger driving force creates a
wider driving frequency range in which the internal resonance
requirement is satisfied.

III. EXPERIMENTAL SETUP

A micromechanical cantilever beam resonator is designed and
fabricated. The resonator fabricated by a standard silicon on insula-
tor (SOI) process consists of two side-by-side microcantilever
beams with mass blocks on their ends, as shown in Fig. 3(a). The
two beams are identical with dimensions of 233 μm long, 10 μm
wide, and 10 μm thick. A tiny silicon bar of 24 μm long and 4 μm
wide is designed to connect two mass blocks in order to enable a
current through the resonator body. Two small square blocks made
of a platinum compound are deposited on the surface of each mass
blocks by a focused ion beam (FIB) technique, which are used to
adjust the resonance frequency of the extensional mode by chang-
ing its equivalent mass. The frequency ratio of the extensional and

FIG. 1. Schematic of the cantilever beam resonator.
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flexural mode can thus be turned to be extremely close to 2:1 by
adjusting the thickness of the small square blocks.

The experimental setup is also shown in Fig. 3(a). Electrostatic
actuation and differential piezoresistive sensing methods23,24 are

utilized in this experiment. The extensional mode is driven into
vibration by a combination of Vac and Vdc applied on two elec-
trodes B. In order to characterize the flexural mode independently,
Vac0 and Vdc0 are also used on two electrodes C. The finite element
analysis (FEA) simulated vibration mode shapes of these two
modes are plotted in Figs. 3(b) and 3(c), respectively. Then, a
differential pair of voltages þ0:5Vd and �0:5Vd are separately
applied on the two anchor pads A; therefore, a direct current is
generated through the cantilever beam to facilitate differential pie-
zoresistive sensing. The vibration of both extensional and flexural
modes is sensed simultaneously by the piezoresistive effect without
changing the readout port. The vibration signal is transformed into
a voltage by a differential circuit and then collected by a network
analyzer and a spectrum analyzer. Finally, a bias voltage Vde is
applied on electrodes D to adjust the stiffness of the flexural mode
through the electrostatic softening effect.25 The testing system is
placed in a vacuum chamber at a pressure below 0.02 Pa to

FIG. 2. Simulated frequency response of extensional (a) and flexural (b)
modes. In (a), the green dashed lines label the internal resonance bandwidth,
and the green dashed circle indicates the amplitude saturation point. (c) is
the amplitude and IR bandwidth of the extensional mode as a function of
driving force F. In this simulation, ω1 ¼ 2ω2 ¼ 1 s�1, d1A0/(m1ω2

1) ¼ 1,
d2A0/(m2ω2

2) ¼ 0:6, c1=(m1ω1) ¼ 0:1, c2=(m2ω2) ¼ 0:04, A0 ¼ F0=(ω1c1),
F0=m1 ¼ 0:5 m=s2.

FIG. 3. (a) Microscopic picture and schematic of the open loop measurement
setup of the micromechanical cantilever beam resonator. Mode shape of the
extensional mode (b) and flexural mode (c) obtained by FEA simulation.
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minimize the air-damping loss. The test is conducted in room
temperature.

IV. EXPERIMENTAL RESULTS

A. Open loop tests

To begin with, the extensional mode and flexural mode are
characterized separately in the open loop system. The frequency
response curves of two modes under various driving forces are
measured by a network analyzer, as shown in Figs. 4(a) and 4(b),
respectively. The extensional mode has good linearity, while the
flexural mode shows slight hardening nonlinearity. The resonance
frequency ratio of the two modes is 1.9987 to 1 at a small ampli-
tude. It should be noted that with a large driving force applied, a
downward peak is observed in Fig. 4(a), indicating an amplitude
drop and energy leakage in the extensional mode. The downward
peak has a frequency twice the resonance frequency of the flexural

mode, suggesting a 2:1 internal resonance between two vibration
modes. The energy flows from the extensional mode to the flexural
mode, leading to a downward internal resonance peak in the fre-
quency response of the extensional mode.

To further confirm this judgment, a spectrum analyzer is used
to measure the internal resonance response of the flexural mode
during the process of the frequency response measurement in the
extensional mode. The spectrum analyzer is set as maximum hold
in each measurement. The frequency response of the extensional
mode and the maximum frequency spectrum of the flexural mode
are simultaneously measured under different Vde values. The results
are shown in Fig. 5. The bias voltage Vde is utilized to adjust the
stiffness of the flexural mode through electrostatic softening effect.
Predictably, the resonance frequency of the flexural mode will drop

FIG. 4. Measured frequency response of the extensional (a) and flexural (b)
mode separately under various driving forces. Vac ¼ Vac0 ¼ 10 dbm, Vd ¼ 7 V,
Vde ¼ 0 V in this experiment.

FIG. 5. Measured frequency response of the extensional mode with the
network analyzer (a) and maximum frequency spectrum of the flexural mode
with the spectrum analyzer (b). In (a), the green dashed lines label the internal
resonance bandwidth of the extensional mode. Vac ¼ 10 dbm, Vdc ¼ 25 V,
Vd ¼ 7 V, and Vac0 and Vdc0 are idle.
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as Vde increases. As can be found in Fig. 5(a), the downward inter-
nal resonance peak moves to lower frequency and approaches the
resonance frequency of the extensional mode as Vde increases,
which makes the resonance frequency ratio of two modes closer to
2:1. During this process, the IR peak becomes bigger and the IR
bandwidth becomes wider, suggesting the internal resonance inten-
sity becomes stronger as the resonance frequency ratio gets closer
to an exact integer ratio. Meanwhile, during the frequency response
measurement of the extensional mode, only when the driving fre-
quency sweeps within the IR bandwidth can the response of the
flexural mode be detected in the spectrum analyzer. The measured
maximum frequency spectrum of the flexural mode in Fig. 5(b)
and three IR peaks in Fig. 5(a) show an exact half frequency rela-
tionship, which fully corroborates the 2:1 internal resonance
between the extensional and flexural mode.

Then, Vde is kept at 108 V as constant; thus, the frequency
ratio of the two vibration modes is very close to 2:1. The frequency
response of the extensional mode and the maximum frequency
spectrum of the flexural mode are measured under various driving
forces of the extensional mode. The results are shown in Fig. 6. As
can be found in Fig. 6(a), the 2:1 internal resonance between the
extensional and flexural mode suddenly appears when the driving
force exceeds a certain level (Vdc � 15 V) and brings about a down-
ward internal resonance peak with two upward peaks on its both
sides. Meanwhile, in the maximum frequency spectrum of the
flexural mode shown in Fig. 6(b), the internal resonance response
of the flexural vibration becomes stronger and wider as the driving
voltage of the extensional mode rises. Clear energy distribution of
the extensional and flexural mode in the frequency domain under
various driving conditions is observed, showing more energy trans-
fers from the extensional mode to the flexural mode as the driving
force increases. Attributed to such increasingly enhanced energy
transfer, an amplitude saturation and IR bandwidth growth are
detected in the extensional mode. The amplitude of the extensional
mode at the IR peak point and the internal resonance bandwidth
are figured out and plotted in Fig. 6(c). The amplitude of the exten-
sional mode increases with the driving force in the beginning and
then starts to saturate after internal resonance occurs. Meanwhile,
the flexural mode draws extra energy, resulting in a wider IR band-
width as the driving force increases. The results in Fig. 6 have a
good agreement with the numerical simulation results in Fig. 2.

B. Closed loop tests

In this section, a closed loop feedback control circuit is utilized
to make the extensional mode generate self-oscillation. The closed
loop system is schematically shown in Fig. 7. The vibration signals
of both extensional and flexural modes are collected by the differ-
ential circuit and delivered into an amplifier. Then, the extensional
vibrating signal is selected by a bandpass filter and phase-shifted
and finally transformed to a self-excitation driving signal Vac by a
gain controller. The closed loop oscillation frequency of the exten-
sional mode is recorded by a frequency counter. Meanwhile, the
vibration signal of the flexural mode is directly measured by a spec-
trum analyzer.

In the closed loop experiment, the resonance frequency of the
flexural mode is set to be a variable parameter by adjusting Vde,

and the self-oscillation frequency of the extensional mode is
recorded. The oscillator is restarted each time after Vde changes in
this measurement. The closed loop oscillation frequency of the
extensional mode as a function of Vde is shown in the green line

FIG. 6. Measured frequency response of the extensional mode with the
network analyzer (a) and maximum frequency spectrum of the flexural mode
with the spectrum analyzer (b) under various driving forces. In (a), the green
dashed lines label the internal resonance bandwidth, and the green dashed
circle indicates the amplitude saturation point. (c) is the amplitude and IR band-
width of the extensional mode as a function of the driving voltage Vdc . In this
experiment, Vac ¼ 10 dbm, Vde ¼ 108 V, Vd ¼ 7 V, and Vac0 and Vdc0 are idle.
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labeled as “Direct” in Fig. 8(a). With the process of Vde gradually
increasing from 30 V to 130 V, the output frequency barely changes
in the beginning and then starts to drop when Vde ¼ 75 V. This
drop does not last long and is followed by a sudden jump to a
higher frequency when Vde ¼ 95 V. After that, the frequency again
gradually drops close to the very beginning position at Vde ¼ 105 V
and then tends to be constant.

This self-oscillation frequency shifting phenomenon can be
explained by introducing the frequency response of the extensional
mode as shown in Figs. 8(b)–8(e), as well as the frequency spec-
trum of the flexural mode plotted in Figs. 8(f )–8(i). The frequency
response is measured by breaking the connection between the
phase shift and gain controller in Fig. 7 and inserting a network
analyzer between them to operate the measurement. In the begin-
ning, the bias voltage Vde is low, and the frequency of the IR peak
is significantly higher than the resonance frequency of the exten-
sional mode. The self-oscillation frequency of the extensional mode
(marked in a red dashed line) locks to its original resonance peak
as shown in Fig. 8(b). No internal resonance response of the
flexural mode is observed as shown in Fig. 8(f ). This part corre-
sponds to region Non-IR 1 in Fig. 8(a). As Vde continues to
increase, the IR peak moves to lower frequency. The oscillation fre-
quency begins to lock to the upward peak on the left, as can be
found in Fig. 8(c). Meanwhile, the flexural mode vibrates at exactly
half of the extensional oscillation frequency due to 2:1 internal res-
onance [Fig. 8(g)]. The resonance frequency of the flexural mode
drops as Vde increases because of the electrostatic softening effect;
therefore, there exists a downtrend in the self-oscillation frequency
of the extensional mode (IR-Low) in Fig. 8(a). Keeping Vde

growing, then the oscillation frequency suddenly switches from
the lower frequency upward peak to the higher frequency one
[Fig. 8(d)], leading to a frequency jump. The system is still in inter-
nal resonance state [Fig. 8(h)], corresponding to region IR-High in
Fig. 8(a). Similar downtrend of the oscillation frequency is observed

due to the resonance frequency drop of the flexural mode. Finally,
when Vde is too high and the frequency of the IR peak is signifi-
cantly lower than the resonance frequency of the extensional mode,
the self-oscillation frequency again locks back to the original

FIG. 8. (a) Measured closed loop oscillation frequency of the extensional mode
as a function of Vde. (b)–(e) are frequency response curves of the extensional
mode under different Vde values in the open loop test. The red dashed lines
label the self-oscillation frequency of the extensional mode fc . ( f )–(i) are fre-
quency spectra of the flexural mode under different Vde values in the closed
loop system test. In the above measurement, Vdc ¼ 40 V, Vd ¼ 7 V, Vac is
constant depending on the gain control circuit, and Vac0 and Vdc0 are idle.

FIG. 7. Schematic of the closed loop measurement setup of the cantilever
beam resonator.
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resonance peak of the extensional mode [Fig. 8(e)]. The internal
resonance disappears [Fig. 8(i)]. Region Non-IR 2 in Fig. 8(a)
shows this kind of situation. The internal resonance between the
extensional and flexural mode leads to a downward IR peak with
two sharp upward peaks on both sides in the open loop frequency
response. When internal resonance occurs in the closed loop
system, the self-oscillation frequency of the extensional mode will
lock to one of the upward peaks in the frequency response. As for
which the peak will be locked, it depends on the resonance fre-
quency ratio between two vibration modes. The flexural mode will
oscillate at the frequency exactly half of the extensional oscillation
frequency. This mechanism enables integer multiple amplification
of the resonance frequency shift of a certain vibration mode by
measuring another mode in an internal resonance condition, which
could be utilized in frequency tuning and sensing signal
amplification.26,27

In the above experiment, the oscillator is manually restarted
each time after Vde changes. Another two working conditions are
considered in which the oscillator keeps working during the whole
process. The self-oscillation frequency of the extensional mode as a
function of the bias voltage Vde in these two conditions is also
shown in Fig. 8(a). The blue and red lines correspond to the Vde

forward and backward sweep, respectively. As can be seen in this
figure, in the forward sweep condition, the oscillation frequency of
the extensional mode always locks to the lower frequency upward
peak during internal resonance exists, even at high Vde value (115–
120 V) where internal resonance cannot exist in the former experi-
ment. Meanwhile, if Vde sweeps backward, a similar phenomenon
is observed that the self-oscillation frequency maintains at the
higher frequency upward peak in the presence of internal reso-
nance, and internal resonance will keep existing until a very low
Vde value (30 V). The oscillation frequency of the extensional mode
shows a bistable phenomenon and tends to stay at the first locked
upward peak if the oscillator keeps working. This bistable oscilla-
tion frequency system also shows a hysteresis characteristic.

It is demonstrated that in a mode-coupled system, irregular
vibration in one mode is transduced into frequency noise of
another mode.28,29 However, frequency stability can be improved
when different modes satisfy an internal resonance condition.11,21

In the final experiment, the frequency stability of the closed loop
oscillator is experimentally studied by analyzing Allan deviation in
non-IR and IR conditions. The bias voltage Vde is first set to be
0 V, and internal resonance is absent in the closed loop system. The
self-oscillation frequency of the extensional mode in 500 s is
recorded by a frequency counter with a gate time of 10 ms. Then,
Vde is fixed at 95 V to make sure internal resonance occurs, and the
output frequency is recorded again with the same settings. The
oscillator is restarted before each measurement in this experiment.
The Allan deviation as a function of integration time in two condi-
tions is calculated, as shown in Fig. 9(a). It is found that the short-
term frequency stability is improved if internal resonance exists.
The improvement can be as large as one magnitude at an integra-
tion time of 100 s. To explain the frequency stabilization phenome-
non, the amplitude and phase of the extensional mode as a
function of driving frequency are measured by a network analyzer
and plotted in Figs. 9(b) and 9(c), respectively. The measurement
method is the same as the previous experiment shown in Fig. 8.

The closed loop oscillation frequency is marked with red dashed
lines in these two figures. As can be seen in the non-IR condition,
the oscillation frequency locks to the original resonance peak of the
extensional mode, which corresponds to a gradual phase-frequency
slope point (�0:0502�/Hz) in the phase response curve. However,

FIG. 9. (a) Allan deviation of the cantilever beam oscillator in non-IR and IR
conditions. (b) and (c) are measured amplitude and phase response of the
extensional mode in different frequency ratio conditions. Vdc ¼ 40 V, Vd ¼ 7 V,
Vac is constant depending on the gain control circuit, and Vac0 and Vdc0 are idle
in this experiment.
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when internal resonance occurs, the oscillator will work at the fre-
quency of the upward peak with higher frequency, corresponding
to a very steep phase-frequency slope (�1:1609�/Hz). It is demon-
strated in some publications that nonlinearity of a resonator leads
to improved frequency stability when the phase shift of the sustain-
ing amplifier forces the operating point to a steeper phase-
frequency slope.30,31 The internal resonance induced steep phase-
frequency slope in the closed loop system reduces the influences of
phase variations on the oscillation frequency; thus, a frequency sta-
bilization is achieved. Such short-term frequency stability improve-
ment induced by the internal resonance between two coupled
vibration modes could be applied to a wide range of MEMS
oscillators.

V. CONCLUSION

In this paper, the 2:1 internal resonance between the exten-
sional and flexural mode in a micromechanical cantilever beam
resonator is investigated. The mode-coupled system is first
modeled by a quadratic nonlinear coupling equation set. The fre-
quency response of the extensional and flexural modes is numeri-
cally simulated. Amplitude saturation and IR bandwidth growth
are observed within the downward internal resonance peak in the
simulation results. Then, the beam resonator is experimentally
tested with open and closed loop methods. In the open loop test,
the energy distribution of the extensional and flexural mode in
the frequency domain is characterized under various resonance
frequency ratios or driving force condition, which is achieved by
simultaneously measuring the frequency response of the exten-
sional mode and the frequency spectrum of the flexural mode.
Downward internal resonance peaks are observed in the frequency
response of the extensional mode. Amplitude saturation and IR
bandwidth growth phenomena are also observed as the driving
force of the extensional mode increases above a certain threshold.
The open loop test results have a good agreement with the
numerical simulation.

In the subsequent closed loop test, the extensional mode is
controlled to generate self-oscillation. The oscillation frequency
of the extensional mode is experimentally studied. When there is
no internal resonance, the self-oscillation frequency locks to the
original resonance peak of the extensional mode, with no flexural
mode vibration being detected. Internal resonance in the closed
loop system appears when the ratio of the extensional oscillation
frequency to the resonance frequency of the flexural mode is
extremely close to 2:1, leading to a bistable self-oscillation
frequency of the extensional mode. The oscillation frequency of
the extensional mode can be tuned by adjusting the resonance
frequency of the flexural mode in the case of internal resonance,
and this tuning process shows a hysteresis under the influence of
the bistable self-oscillation frequency mechanism. In addition,
the short-term frequency stability of the extensional mode is
improved when the internal resonance occurs, which can be
explained by a steeper phase-frequency slope at the self-
oscillation frequency point in the phase response curve. The
dynamic characteristics induced by internal resonance show great
potential to improve the performance of MEMS resonators and
oscillators.
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